We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is end...We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is endpumped by a 935-nm diode laser. An average output power of 1.96 W is produced at pulse repetition rate of50 k Hz at emission wavelengths around 1035 nm, with a slope efficiency of 16%. The highest pulse energy of 269 μJ is generated at pulse repetition rate of 1 k Hz, with pulse width 12.1 ns and peak power 20.53 kW.展开更多
We present a study on a watt-level acousto-optically Q-switched Pr:YLF laser at three different repetition rates(10 kHz,20 kHz,and 50 kHz)for the first time,to the best of our knowledge.The corresponding average outpu...We present a study on a watt-level acousto-optically Q-switched Pr:YLF laser at three different repetition rates(10 kHz,20 kHz,and 50 kHz)for the first time,to the best of our knowledge.The corresponding average output powers and pulse widths were measured to be 1.14 W,1.2 W,and 1.32 W,and 40 ns,52 ns,and 80 ns,respectively.A maximum pulse energy of0.11 mJ was obtained,corresponding to a peak power of up to 2.8 kW at a repetition rate of 10 kHz.The simulated dynamics of a fast Q-switched Pr:YLF laser is in agreement with the experiment.The laser's ability to generate stable pulses with high peak power and short pulse width makes it highly desirable for various practical applications,such as laser machining and material processing.展开更多
We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that t...We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that the thermal lens effect is gradually aggravated with the increase of working frequencies, and even working at 100 Hz, a single pulse energy of 234 m J can be achieved. A maximum average power of 41.5 W is achieved with a working frequency of 20 Hz and slope efficiency of 2.82%. This output power is much higher than other xenon lamp-pumped erbium laser devices.A Q-switched laser is demonstrated by using the TeO2crystal, the maximum output energies of 11.5 m J and 3.5 m J are obtained at 50 and 100 Hz, the corresponding peak powers are 93.4 k W and 17.2 kW, respectively.The laser wavelengths and beam quality factors are also characterized in the free-running and Q-switched modes. A higher pulse energy and peak power laser could be achieved further by improving the damage threshold of TeO2acousto-optical Q-switching. All the experimental results illustrate that the xenon lamp-pumped Er:YAP laser is a promising candidate for high-power and high-frequency mid-infrared laser devices.展开更多
A highly efficient milli-joule-level Q-switched Tm,La:CaF_(2)laser is experimentally demonstrated.By employing an acousto-optic modulator,the diode-pumped pulsed lasers are stably operated at repetition rates ranging ...A highly efficient milli-joule-level Q-switched Tm,La:CaF_(2)laser is experimentally demonstrated.By employing an acousto-optic modulator,the diode-pumped pulsed lasers are stably operated at repetition rates ranging from 500 Hz to 10 kHz.Dual-wavelength operation of 1881.7 nm and 1888.5 nm is achieved with slope efficiency of 64.7%.Up to 1.89 mJ of pulse energy is obtained at a pulse width of 100 ns,corresponding to a peak power of 18.88 kW.These results verified that the Tm,La:CaF_(2)crystal could be a promising candidate for achieving highly efficient and high-energy pulsed lasers.展开更多
A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identi...A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.展开更多
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.展开更多
Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanuf...Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanufacturing technologies,which has been widely used in manufacturing micro-optics,photonic crystals,microfluidics,meta-surface,and mechanical metamaterials.Despite of tremendous potential of MPL in laboratorial and industrial applications,simultaneous achievement of high throughput,high accuracy,high design freedom,and a broad range of material structuring capabilities remains a long-pending challenge.To address the issue,we propose an acousto-optic scanning with spatial-switching multispots(AOSS)method.Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning.Moreover,a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom.An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6×10^(7)voxel s^(-1),which is nearly one order of magnitude higher than earlier scanning MPL,exhibiting its promise for future scalable 3D nanomanufacturing.展开更多
We experimentally investigate the continuous-wave(cw)and acousto-optical(AO)Q-switched performance of a diode-pumped Ho:(Sc_(0.5)Y_(0.5))_2SiO_5(Ho:SYSO)laser.A fiber-coupled laser diode at 1.91m is employed as the pu...We experimentally investigate the continuous-wave(cw)and acousto-optical(AO)Q-switched performance of a diode-pumped Ho:(Sc_(0.5)Y_(0.5))_2SiO_5(Ho:SYSO)laser.A fiber-coupled laser diode at 1.91m is employed as the pump source.The cw Ho:SYSO laser produces 13.0 W output power at 2097.9 nm and 56.0%slope efficiency with respect to the absorbed pump power.In the AO Q-switched regime,at a pulse repetition frequency of 5 kHz,the Ho:SYSO laser yields 2.1 mJ pulse energy and 21 ns pulse width,resulting in a calculated peak power of 100 k W.In addition,at the maximum output level,the beam quality factor of the Q-switched Ho:SYSO laser is measured to be about 1.6.展开更多
We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a t...We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.展开更多
The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically...The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.展开更多
We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film ...We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.展开更多
A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic...A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.展开更多
A passive Q-switched flash-lamp-pumped Nd∶YAG laser with the ion-implanted semi-insulating GaAs wafer is reported.The wafer is implanted with 400keV As+ ions in the concentration of 10 16cm -2.Using GaAs wafer as a...A passive Q-switched flash-lamp-pumped Nd∶YAG laser with the ion-implanted semi-insulating GaAs wafer is reported.The wafer is implanted with 400keV As+ ions in the concentration of 10 16cm -2.Using GaAs wafer as an absorber and an output coupler,62ns pulse duration of single pulse is obtained.展开更多
The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported d...The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.展开更多
A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1....A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1.25-5.0kHz when the laser cavityparameters and pump power are changed. The Q-switched dynamics is analyzed with therate equation theorry. The theoretical and experimental results agree well.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepare...Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.展开更多
A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical e...A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical evaporation method.By inserting the WS2 SA into the plano-concave laser cavity,we achieve 153-ns pulses with an average output power of1.19 W at 1064 nm.To the best of our knowledge,both of them are the best results among those obtained by the Q-switched solid-state lasers with WS_2-based absorbers.The repetition rate ranges from 1.176 MHz to 1.578 MHz.As far as we know,it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far.展开更多
We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating...We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.展开更多
We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 ...We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 W were acquired from the Tm, Ho:LuVO4 laser with the pump power of 14.55 W, corresponding to a pulse width of 2.89 μs,a pulse repetition rate of 71.84 kHz, and a pulse energy of about 6.70 μJ.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274188 and 11574170
文摘We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is endpumped by a 935-nm diode laser. An average output power of 1.96 W is produced at pulse repetition rate of50 k Hz at emission wavelengths around 1035 nm, with a slope efficiency of 16%. The highest pulse energy of 269 μJ is generated at pulse repetition rate of 1 k Hz, with pulse width 12.1 ns and peak power 20.53 kW.
基金supported by the National Natural Science Foundation of China(No.61975168)。
文摘We present a study on a watt-level acousto-optically Q-switched Pr:YLF laser at three different repetition rates(10 kHz,20 kHz,and 50 kHz)for the first time,to the best of our knowledge.The corresponding average output powers and pulse widths were measured to be 1.14 W,1.2 W,and 1.32 W,and 40 ns,52 ns,and 80 ns,respectively.A maximum pulse energy of0.11 mJ was obtained,corresponding to a peak power of up to 2.8 kW at a repetition rate of 10 kHz.The simulated dynamics of a fast Q-switched Pr:YLF laser is in agreement with the experiment.The laser's ability to generate stable pulses with high peak power and short pulse width makes it highly desirable for various practical applications,such as laser machining and material processing.
基金supported by the Natural Science Foundation of Anhui Province (Grant No. 2208085QF217)the National Natural Science Foundation of China (Grant No. 52102012)the Hefei Institutes of Physical Science (HFIPS) Director’s Fund (Grant No. YZJJ2022QN08)。
文摘We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that the thermal lens effect is gradually aggravated with the increase of working frequencies, and even working at 100 Hz, a single pulse energy of 234 m J can be achieved. A maximum average power of 41.5 W is achieved with a working frequency of 20 Hz and slope efficiency of 2.82%. This output power is much higher than other xenon lamp-pumped erbium laser devices.A Q-switched laser is demonstrated by using the TeO2crystal, the maximum output energies of 11.5 m J and 3.5 m J are obtained at 50 and 100 Hz, the corresponding peak powers are 93.4 k W and 17.2 kW, respectively.The laser wavelengths and beam quality factors are also characterized in the free-running and Q-switched modes. A higher pulse energy and peak power laser could be achieved further by improving the damage threshold of TeO2acousto-optical Q-switching. All the experimental results illustrate that the xenon lamp-pumped Er:YAP laser is a promising candidate for high-power and high-frequency mid-infrared laser devices.
基金financially supported by the National Natural Science Foundation of China(Nos.11974220,61635012,and 61925508)Science and Technology Commission of Shanghai Municipality(No.20511107400)+1 种基金CAS Interdisciplinary Innovation Team(No.ICTD 2019-12)Natural Science Foundation of Shandong Province(No.ZR2021LLZ008).
文摘A highly efficient milli-joule-level Q-switched Tm,La:CaF_(2)laser is experimentally demonstrated.By employing an acousto-optic modulator,the diode-pumped pulsed lasers are stably operated at repetition rates ranging from 500 Hz to 10 kHz.Dual-wavelength operation of 1881.7 nm and 1888.5 nm is achieved with slope efficiency of 64.7%.Up to 1.89 mJ of pulse energy is obtained at a pulse width of 100 ns,corresponding to a peak power of 18.88 kW.These results verified that the Tm,La:CaF_(2)crystal could be a promising candidate for achieving highly efficient and high-energy pulsed lasers.
基金Project supported by the Fund from Nanjing University of Posts and Telecommunications,China(Grant Nos.JUH219002 and JUH219007)the Key Research and Development Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
基金National Key Research and Development Program of China(2021YFF0502700)National Natural Science Foundation of China(52275429,62205117)+4 种基金Innovation project of Optics Valley Laboratory(OVL2021ZD002)Hubei Provincial Natural Science Foundation of China(2022CFB792)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)West Light Foundation of the Chinese Academy of Sciences(xbzg-zdsys-202206)Knowledge Innovation Program of Wuhan-Shuguang。
文摘Nano-3D printing has obtained widespread attention owing to its capacity to manufacture end-use components with nano-scale features in recent years.Multiphoton lithography(MPL)is one of the most promising 3D nanomanufacturing technologies,which has been widely used in manufacturing micro-optics,photonic crystals,microfluidics,meta-surface,and mechanical metamaterials.Despite of tremendous potential of MPL in laboratorial and industrial applications,simultaneous achievement of high throughput,high accuracy,high design freedom,and a broad range of material structuring capabilities remains a long-pending challenge.To address the issue,we propose an acousto-optic scanning with spatial-switching multispots(AOSS)method.Inertia-free acousto-optic scanning and nonlinear swept techniques have been developed for achieving ultrahigh-speed and aberration-free scanning.Moreover,a spatial optical switch concept has been implemented to significantly boost the lithography throughput while maintaining high resolution and high design freedom.An eight-foci AOSS system has demonstrated a record-high 3D printing rate of 7.6×10^(7)voxel s^(-1),which is nearly one order of magnitude higher than earlier scanning MPL,exhibiting its promise for future scalable 3D nanomanufacturing.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51572053,61805209 and U1530152
文摘We experimentally investigate the continuous-wave(cw)and acousto-optical(AO)Q-switched performance of a diode-pumped Ho:(Sc_(0.5)Y_(0.5))_2SiO_5(Ho:SYSO)laser.A fiber-coupled laser diode at 1.91m is employed as the pump source.The cw Ho:SYSO laser produces 13.0 W output power at 2097.9 nm and 56.0%slope efficiency with respect to the absorbed pump power.In the AO Q-switched regime,at a pulse repetition frequency of 5 kHz,the Ho:SYSO laser yields 2.1 mJ pulse energy and 21 ns pulse width,resulting in a calculated peak power of 100 k W.In addition,at the maximum output level,the beam quality factor of the Q-switched Ho:SYSO laser is measured to be about 1.6.
基金support for this work through Grant, HiCoE (PRC-2022)the Universiti Malaya for the funding of this work through Grant Nos. RU005-2021 and MGO23-2022。
文摘We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.
基金National Key R&D Program of China(No.2017YFA0304203)National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC),Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_17R70)+3 种基金National Natural Science Foundation of China(Nos.61975103,61875108,61775125 and 11434007)Major Special Science and Technology Projects in Shanxi(No.201804D131036)111 Project(No.D18001)Fund for Shanxi’1331KSC’。
文摘The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.
基金Project supported by the Serving Local Special Project of Shaanxi Provincial Department of Education of China (Grant No. 19JC040)the National Natural Science Foundation of China (Grant No. 61905193)。
文摘We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064025)the Natural Science Foundation of Jiangxi Province,China(Grant No.20212ACB202006)+1 种基金the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province,China(Grant No.20204BCJ22012)the Open Project of the Key Laboratory of Radar Imaging and Microwave Photonic Technology of the Education Ministry of China.
文摘A phoxonic crystal waveguide with the glide symmetry is designed,in which both electromagnetic and elastic waves can propagate along the glide plane at the same time.Due to the glide symmetry,the bands of the phoxonic crystal super-cell degenerate in pairs at the boundary of the Brillouin zone.This is the so-called band-sticking effect and it causes the appearance of gapless guided-modes.By adjusting the magnitude of the glide dislocation the edge bandgaps,the bandgap of the guided-modes at the boundary of the Brillouin zone,can be further adjusted.The photonic and phononic guided-modes can then possess only one mode for a certain frequency with relatively low group velocities,achieving single-mode guided-bands with relatively flat dispersion relationship.In addition,there exists acousto-optic interaction in the cavity constructed by the glide plane.The proposed waveguide has potential applications in the design of novel optomechanical devices.
文摘A passive Q-switched flash-lamp-pumped Nd∶YAG laser with the ion-implanted semi-insulating GaAs wafer is reported.The wafer is implanted with 400keV As+ ions in the concentration of 10 16cm -2.Using GaAs wafer as an absorber and an output coupler,62ns pulse duration of single pulse is obtained.
基金supported by the National Natural Science Foundation of China(Grant No.61975055)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30165)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022QF005)the Doctoral Fund of University of Heze(Grant No.XY22BS14).
文摘The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.
文摘A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1.25-5.0kHz when the laser cavityparameters and pump power are changed. The Q-switched dynamics is analyzed with therate equation theorry. The theoretical and experimental results agree well.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674036)the Beijing Youth Top-notch Talent Support Program,China(Grant No.2017000026833ZK08)the Fund of State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,China(Grant Nos.IPOC2016ZT04 and IPOC2017ZZ05)
文摘Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)
文摘A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical evaporation method.By inserting the WS2 SA into the plano-concave laser cavity,we achieve 153-ns pulses with an average output power of1.19 W at 1064 nm.To the best of our knowledge,both of them are the best results among those obtained by the Q-switched solid-state lasers with WS_2-based absorbers.The repetition rate ranges from 1.176 MHz to 1.578 MHz.As far as we know,it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61077017 and 61378028)the Program for New Century Excellent Talents in University,China (Grant Nos.NCET-11-0069 and NCET-10-0291)the 111 Project (Grant No.B13042)
文摘We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775053,51572053,51777046,and 61705140)
文摘We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 W were acquired from the Tm, Ho:LuVO4 laser with the pump power of 14.55 W, corresponding to a pulse width of 2.89 μs,a pulse repetition rate of 71.84 kHz, and a pulse energy of about 6.70 μJ.