Acoustic streaming enabled by a Lamb wave resonator(LWR)is efficient for particle trapping and enrichment in microfluidic channels.However,because Lamb waves combine the features of bulk acoustic waves and surface aco...Acoustic streaming enabled by a Lamb wave resonator(LWR)is efficient for particle trapping and enrichment in microfluidic channels.However,because Lamb waves combine the features of bulk acoustic waves and surface acoustic waves,the resulting acoustic streaming in the LWR occurs in multiple planes,and the particle flow behavior in this acoustofluidic system is largely unknown.Reported here are numerical simulations and laboratory experiments conducted to investigate the boundary conditions for particle motion inside a microvortex induced by an LWR.Upon dynamic capture,the particles’trajectories become orbital paths within an acoustic vortex.The suspended particles encounter two distinct acoustic phenomena,i.e.,the drag force resulting from acoustic streaming and the acoustic radiation force,which exert forces in various directions on the particles.When the acoustic radiation force and the fluid drag force are dominant for large and small particles in a mixed solution,respectively,the large particles reside within the vortex while the small particles remain at its periphery.Conversely,when the acoustic radiation force is dominant for both types of particles,the distribution pattern is reversed.展开更多
Acoustofluidics has been a promising approach using sound waves to manipulate particles and actuate fluids in biomedical applications.It usually generates acoustic radiation force and acoustic streaming to initiate di...Acoustofluidics has been a promising approach using sound waves to manipulate particles and actuate fluids in biomedical applications.It usually generates acoustic radiation force and acoustic streaming to initiate diffraction,reflection and interference,building up a pressure distribution to facilitate accurate manipulation of micro-or nano-scale particles and fluids.Owing to its remarkable contact-free and biocompatible advantages,acoustoflu-idics has been used in high-throughput cell analysis,size-controllable organoid structures,and functional tissue mimics.We enumerate the basic concepts and the sufficient research of acoustofluidics in precise patterning and tissue engineering in this review,including the design and function of four typical acoustofluidic devices,var-ious forms of cell patterning and 3D tissue engineering.Meanwhile,we outlined current challenges and future directions of acoustofluidics in biomedicine and tissue engineering.展开更多
Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets,making it universally applicabl...Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets,making it universally applicable to almost all biological systems.Thin-film bulk acoustic wave(BAW)resonators operating at gigahertz(GHz)frequencies have been demonstrated to generate localized high-speed microvortices through acoustic streaming effects.Benefitting from the strong drag forces of the high-speed vortices,BAW-enabled GHz acoustic streaming tweezers(AST)have been applied to the trapping and enrichment of particles ranging in size from micrometers to less than 100 nm.However,the behavior of particles in such 3D microvortex systems is still largely unknown.In this work,the particle behavior(trapping,enrichment,and separation)in GHz AST is studied by theoretical analyses,3D simulations,and microparticle tracking experiments.It is found that the particle motion in the vortices is determined mainly by the balance between the acoustic streaming drag force and the acoustic radiation force.This work can provide basic design principles for AST-based lab-on-a-chip systems for a variety of applications.展开更多
Rotational manipulation of massive particles and biolo gical samples is essential for the development of miniaturized lab-on-a-chip platforms in the fields of chemical,medical,and biological applications.In this paper...Rotational manipulation of massive particles and biolo gical samples is essential for the development of miniaturized lab-on-a-chip platforms in the fields of chemical,medical,and biological applications.In this paper,a device concept of a two-dimensional acoustofluidic chamber actuated by multiple nonlinear vibration sources is proposed.The functional chamber enables the generation of acoustic streaming vortices for potential applications that include strong mixing of multiphase flows and rotational manipulation of micro-/nano-scale objects without any rotating component.Using numerical simulations,we find that diversified acoustofluidic fields can be generated in the chamber under various actuations,and massive polystyrene beads inside can experience different acoustophoretic motions under the combined effect of an acoustic radiation force and acoustic streaming.Moreover,we investigate and clarify the effects of structural design on modulation of the acoustofluidic fields in the chamber.We believe the presented study could not only provide a promising potential tool for rotational acoustofluidic manipulation,but could also bring this community some useful design insights into the achievement of desired acoustofluidic fields for assorted microfluidic applications.展开更多
Acoustofluidic technology combines acoustic and microfluidic technologies to realize particle manipulation in microchannels driven by acoustic waves,and the acoustic radiation force(ARF)with boundaries is important fo...Acoustofluidic technology combines acoustic and microfluidic technologies to realize particle manipulation in microchannels driven by acoustic waves,and the acoustic radiation force(ARF)with boundaries is important for particle manipulation in an acoustofluidic device.In the work reported here,the ARF on a free cylinder immersed in a viscous fluid with an incident plane wave between two impedance boundaries is derived analytically and calculated numerically.The influence of multiple scattering between the particle and the impedance boundaries is described by means of image theory,the finite-series method,and the translational addition theorem,and multiple scattering is included partly in image theory.The ARF on a free rigid cylinder in a viscous fluid is analyzed by numerical calculation,with consideration given to the effects of the distances from cylinder edge to boundaries,fluid viscosity,cylinder size,and boundary reflectivity.The results show that the interaction between the two boundaries and the cylinder makes the ARF change more violently with different frequencies,while increasing the viscosity can reduce the amplitude of the ARF in boundary space.This study provides a theoretical basis for particle manipulation by the ARF in acoustofluidics.展开更多
Acoustic propulsion system presents a novel underwater propulsion approach in small scale swimmer.This study introduces a submerged surface acoustic wave(SAW)propulsion system based on the SiO_(2)/Al/LiNbO_(3) structu...Acoustic propulsion system presents a novel underwater propulsion approach in small scale swimmer.This study introduces a submerged surface acoustic wave(SAW)propulsion system based on the SiO_(2)/Al/LiNbO_(3) structure.At 19.25 MHz,the SAW propulsion system is proposed and investigated by the propulsion force calculation,PIV measurements and propulsion measurements.3.3 mN propulsion force is measured at 27.6 V_(pp).To evaluate the miniature swimmer,the SAW propulsion systems with multiple frequencies are studied.At 2.2 W,the submerged SAW propulsion system at 38.45 MHz demonstrates 0.83 mN/mm^(2) propulsion characteristics.At 96.13 MHz and 24 V_(pp),the movements of miniature swimmer with a fully submerged SAW propulsion system are recorded and analyzed to a maximum of 177 mm/s.Because of miniaturization,high power density,and simple structure,the SAW propulsion system can be expected for some microrobot applications,such as underwater drone,pipelinerobotand intravascularrobot.展开更多
基金support of the National Natural Science Foundation of China (Grant No.62174119)the 111 Project (Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘Acoustic streaming enabled by a Lamb wave resonator(LWR)is efficient for particle trapping and enrichment in microfluidic channels.However,because Lamb waves combine the features of bulk acoustic waves and surface acoustic waves,the resulting acoustic streaming in the LWR occurs in multiple planes,and the particle flow behavior in this acoustofluidic system is largely unknown.Reported here are numerical simulations and laboratory experiments conducted to investigate the boundary conditions for particle motion inside a microvortex induced by an LWR.Upon dynamic capture,the particles’trajectories become orbital paths within an acoustic vortex.The suspended particles encounter two distinct acoustic phenomena,i.e.,the drag force resulting from acoustic streaming and the acoustic radiation force,which exert forces in various directions on the particles.When the acoustic radiation force and the fluid drag force are dominant for large and small particles in a mixed solution,respectively,the large particles reside within the vortex while the small particles remain at its periphery.Conversely,when the acoustic radiation force is dominant for both types of particles,the distribution pattern is reversed.
基金the National Natural Science Founda-tion of China(82100664,82071059)the Natural Science Founda-tion of Jiangsu Province(BK20190114)+6 种基金Jiangsu Province Postdoc-toral Research Funding Program(2021K116B)Key Project supported by Medical Science and technology development Foundation,Nanjing Department of Health(YKK19070,YKK19072)the Fundamental Re-search Funds for the Central Universities(0214-14380510)the Nanjing health science and technology development project for Distinguished Young Scholars(JQX19002)Project of Modern Hospital Management and Development Institute,Nanjing University and Aid project of Nan-jing Drum Tower Hospital Health,Education&Research Foundation(NDYG2020047)fundings for Clinical Trials from the Affiliated Drum Tower Hospital,Medical School of Nanjing University(2021-LCYJ-PY-46,2022-LCYJ-PY-35,2022-YXZX-YX-08)the Chen Xiao-ping Founda-tion for the Development of Science and Technology of Hubei Province,China(CXPJJH121001-2021073,CXPJJH122002-019).
文摘Acoustofluidics has been a promising approach using sound waves to manipulate particles and actuate fluids in biomedical applications.It usually generates acoustic radiation force and acoustic streaming to initiate diffraction,reflection and interference,building up a pressure distribution to facilitate accurate manipulation of micro-or nano-scale particles and fluids.Owing to its remarkable contact-free and biocompatible advantages,acoustoflu-idics has been used in high-throughput cell analysis,size-controllable organoid structures,and functional tissue mimics.We enumerate the basic concepts and the sufficient research of acoustofluidics in precise patterning and tissue engineering in this review,including the design and function of four typical acoustofluidic devices,var-ious forms of cell patterning and 3D tissue engineering.Meanwhile,we outlined current challenges and future directions of acoustofluidics in biomedicine and tissue engineering.
基金The authors gratefully acknowledge financial support from the National Key R&D Program of China(2018YFE0118700)the Natural Science Foundation of China(NSFC No.62174119)+1 种基金Tianjin Applied Basic Research and Advanced Technology(17JCJQJC43600)the 111 Project(B07014).
文摘Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets,making it universally applicable to almost all biological systems.Thin-film bulk acoustic wave(BAW)resonators operating at gigahertz(GHz)frequencies have been demonstrated to generate localized high-speed microvortices through acoustic streaming effects.Benefitting from the strong drag forces of the high-speed vortices,BAW-enabled GHz acoustic streaming tweezers(AST)have been applied to the trapping and enrichment of particles ranging in size from micrometers to less than 100 nm.However,the behavior of particles in such 3D microvortex systems is still largely unknown.In this work,the particle behavior(trapping,enrichment,and separation)in GHz AST is studied by theoretical analyses,3D simulations,and microparticle tracking experiments.It is found that the particle motion in the vortices is determined mainly by the balance between the acoustic streaming drag force and the acoustic radiation force.This work can provide basic design principles for AST-based lab-on-a-chip systems for a variety of applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11904117)the IndustryUniversity-Research Collaboration Project of Jiangsu Province,China(Grant No.BY2019058)+1 种基金the Scientific Research Foundation of Huaiyin Institute of Technology(Grant No.Z301B19529)the Training Foundation of Postgraduate Supervisor(Grant No.Z206E20555)。
文摘Rotational manipulation of massive particles and biolo gical samples is essential for the development of miniaturized lab-on-a-chip platforms in the fields of chemical,medical,and biological applications.In this paper,a device concept of a two-dimensional acoustofluidic chamber actuated by multiple nonlinear vibration sources is proposed.The functional chamber enables the generation of acoustic streaming vortices for potential applications that include strong mixing of multiphase flows and rotational manipulation of micro-/nano-scale objects without any rotating component.Using numerical simulations,we find that diversified acoustofluidic fields can be generated in the chamber under various actuations,and massive polystyrene beads inside can experience different acoustophoretic motions under the combined effect of an acoustic radiation force and acoustic streaming.Moreover,we investigate and clarify the effects of structural design on modulation of the acoustofluidic fields in the chamber.We believe the presented study could not only provide a promising potential tool for rotational acoustofluidic manipulation,but could also bring this community some useful design insights into the achievement of desired acoustofluidic fields for assorted microfluidic applications.
基金This work was supported by the National Key R&D Program of China(Grant No.2020YFA0211400)the State Key Program of the National Natural Science Foundation of China(Grant No.11834008)+2 种基金the National Natural Science Foundation of China(Grant Nos.12174192 and 11774167)the State Key Laboratory of Acoustics,Chinese Academy of Science(Grant No.SKLA202210)the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701).
文摘Acoustofluidic technology combines acoustic and microfluidic technologies to realize particle manipulation in microchannels driven by acoustic waves,and the acoustic radiation force(ARF)with boundaries is important for particle manipulation in an acoustofluidic device.In the work reported here,the ARF on a free cylinder immersed in a viscous fluid with an incident plane wave between two impedance boundaries is derived analytically and calculated numerically.The influence of multiple scattering between the particle and the impedance boundaries is described by means of image theory,the finite-series method,and the translational addition theorem,and multiple scattering is included partly in image theory.The ARF on a free rigid cylinder in a viscous fluid is analyzed by numerical calculation,with consideration given to the effects of the distances from cylinder edge to boundaries,fluid viscosity,cylinder size,and boundary reflectivity.The results show that the interaction between the two boundaries and the cylinder makes the ARF change more violently with different frequencies,while increasing the viscosity can reduce the amplitude of the ARF in boundary space.This study provides a theoretical basis for particle manipulation by the ARF in acoustofluidics.
基金based on results obtained from a project,JPNP20004subsidized by the New Energy and Industrial Technology Development Organization(NEDO).
文摘Acoustic propulsion system presents a novel underwater propulsion approach in small scale swimmer.This study introduces a submerged surface acoustic wave(SAW)propulsion system based on the SiO_(2)/Al/LiNbO_(3) structure.At 19.25 MHz,the SAW propulsion system is proposed and investigated by the propulsion force calculation,PIV measurements and propulsion measurements.3.3 mN propulsion force is measured at 27.6 V_(pp).To evaluate the miniature swimmer,the SAW propulsion systems with multiple frequencies are studied.At 2.2 W,the submerged SAW propulsion system at 38.45 MHz demonstrates 0.83 mN/mm^(2) propulsion characteristics.At 96.13 MHz and 24 V_(pp),the movements of miniature swimmer with a fully submerged SAW propulsion system are recorded and analyzed to a maximum of 177 mm/s.Because of miniaturization,high power density,and simple structure,the SAW propulsion system can be expected for some microrobot applications,such as underwater drone,pipelinerobotand intravascularrobot.