In order to realize the high speed data acquisition and fast Fourier analysis, the paper put forward a kind of high speed data acquisition and analysis system based on FPGA, the system uses Cyclone series FPGA with hi...In order to realize the high speed data acquisition and fast Fourier analysis, the paper put forward a kind of high speed data acquisition and analysis system based on FPGA, the system uses Cyclone series FPGA with high-speed A/D converter, and use the fast Fourier custom analysis nucleation of Altera company, using the standard TCP/IP protocol communication with PC, match up the master machine based on Matlab GUI analysis software. We experiment high speed data acquisition and fast Fourier analysis for a plurality of groups of high frequency analog signals, at the same time the results display on the computer. The experimental results validate the fast Fourier analysis theory, and has realized the low cost, high performance data acquisition and analysis of the complete system design.展开更多
The downwash airflow field is an important factor influencing the spraying performance of plant protection UAV,and the structural design of rotors directly affects the characteristics of the downwash airflow field.The...The downwash airflow field is an important factor influencing the spraying performance of plant protection UAV,and the structural design of rotors directly affects the characteristics of the downwash airflow field.Therefore,in this study,three-dimensional models of a six-rotor UAV with various inner tilt angles were established to simulate and analyze the influence of the inner tilt angle on the downwash airflow field based on the Reynolds average NS equation,RNG k-εturbulence model,etc..On this basis,a wireless wind speed acquisition system using the TCP server was developed to carry out the test through the marked points with real-time detection.The simulation results show that,the variation of inner tilt angles of the six-rotor UAV did not cause significant difference in the time dimension of the downwash airflow field,and with the change of the inner tilt angle from 0°to 8°,the distribution of downwash airflow field tended to obliquely shrink towards the central axis direction,and the amplitude of linear attenuation of airflow speed was also increased,which the difference of attenuation amplitude was 1 m/s.Besides,under the different inner tilt angle,the airflow velocity in“lead in area”was significantly greater than that in the“lead out area”,and the difference of air velocity distribution in space would affect the uniformity of droplet deposition.Through the calibration test,the measurement accuracy error of the developed system was lower than 0.3 m/s,and the adjusted R2 of the calibration fitting equation was higher than 0.99.The test and simulation values at test points from 0.2-2.3 m below the rotors exhibit the same variation trend,and the average relative error at the height of 1.1-2.3 m below the rotors and 0.2-0.8 m near the ground was within 10%and 20%,respectively.The simulation and test results were highly reliable,which could provide basis and reference for the design and optimization of plant protection drones.展开更多
文摘In order to realize the high speed data acquisition and fast Fourier analysis, the paper put forward a kind of high speed data acquisition and analysis system based on FPGA, the system uses Cyclone series FPGA with high-speed A/D converter, and use the fast Fourier custom analysis nucleation of Altera company, using the standard TCP/IP protocol communication with PC, match up the master machine based on Matlab GUI analysis software. We experiment high speed data acquisition and fast Fourier analysis for a plurality of groups of high frequency analog signals, at the same time the results display on the computer. The experimental results validate the fast Fourier analysis theory, and has realized the low cost, high performance data acquisition and analysis of the complete system design.
基金supported by National Natural Science Foundation of China(Grant No.31801783).
文摘The downwash airflow field is an important factor influencing the spraying performance of plant protection UAV,and the structural design of rotors directly affects the characteristics of the downwash airflow field.Therefore,in this study,three-dimensional models of a six-rotor UAV with various inner tilt angles were established to simulate and analyze the influence of the inner tilt angle on the downwash airflow field based on the Reynolds average NS equation,RNG k-εturbulence model,etc..On this basis,a wireless wind speed acquisition system using the TCP server was developed to carry out the test through the marked points with real-time detection.The simulation results show that,the variation of inner tilt angles of the six-rotor UAV did not cause significant difference in the time dimension of the downwash airflow field,and with the change of the inner tilt angle from 0°to 8°,the distribution of downwash airflow field tended to obliquely shrink towards the central axis direction,and the amplitude of linear attenuation of airflow speed was also increased,which the difference of attenuation amplitude was 1 m/s.Besides,under the different inner tilt angle,the airflow velocity in“lead in area”was significantly greater than that in the“lead out area”,and the difference of air velocity distribution in space would affect the uniformity of droplet deposition.Through the calibration test,the measurement accuracy error of the developed system was lower than 0.3 m/s,and the adjusted R2 of the calibration fitting equation was higher than 0.99.The test and simulation values at test points from 0.2-2.3 m below the rotors exhibit the same variation trend,and the average relative error at the height of 1.1-2.3 m below the rotors and 0.2-0.8 m near the ground was within 10%and 20%,respectively.The simulation and test results were highly reliable,which could provide basis and reference for the design and optimization of plant protection drones.