The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nan...The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.展开更多
Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesi...Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
The oxidative esterification of methacrolein(MAL)is an important way to prepare high-valued methyl methacrylate(MMA),but this process is ultra-complex due to the high reactivity of both C=O and C=C bonds in MAL molecu...The oxidative esterification of methacrolein(MAL)is an important way to prepare high-valued methyl methacrylate(MMA),but this process is ultra-complex due to the high reactivity of both C=O and C=C bonds in MAL molecule.In order to further improve MMA selectivity,the reaction network and relevant mechanisms have been proposed and profoundly investigated in this paper.Five kinds of fundamental reactions are involved in this process,including(a)the acetal reaction;(b)the aerobic oxidation of hemiacetal;(c)the alkoxylation of C=C double bond;(d)the Diels-Alder reaction;and(e)the hydrogenation reaction of unsaturated double bond.Among them,the Diels-Alder reaction of MAL is non-catalyzed,and the Brönsted acid sites or the Lewis acid sites favor promoting acetal reaction of MAL with methanol,while the alkoxylation of C=C bond with methanol is enhanced under alkaline condition.In particular,by employing the Pd-based catalysts,hydrogenation products are formed in alkaline methanol solution,hence with lower than those obtained by the Au-based catalysts.Notably,it is necessary to match the hemiacetal fromation and aerobic oxidation of hemiacetal,which is relevant with the amount and strength of acid and redox sites.Consequently,this work can provide a good guidance for the further design of both catalysts and processes in future.展开更多
The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,e...The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.展开更多
Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results in...Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results indicated that nano-Al and micro-Al were compactly wrapped by amorphous iron-oxide nanoparticles (about 20 nm), respectively. The iron-oxide showed the mass ratio of Fe to O as similar as that in Fe2O3. Thermal analyses were performed on two nanocomposites, and four simple mixtures (nano-Al+xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al+xero-Fe2O3, and micro-Al+micro-Fe2O3) were also analyzed. There were not apparent distinctions in the reactions of thermites fueled by nano-Al. For thermites fueled by micro-Al, the DSC peak temperatures of micro-Al/Xero-Fe2O3 were advanced by 68.1 ℃ and 76.8 ℃ compared with micro-Al+xero-Fe2O3 and micro-Al+micro-Fe2O3, respectively. Four thermites, namely, nano-Al/xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al/xero-Fe2O3, and micro-Al+micro-Fe2O3, were heated from ambient temperature to 1020 ℃, during which the products at 660 ℃ and 1020 ℃ were collected and analyzed by XRD. Crystals of Fe, FeAl2O4, Fe3O4,α-Fe2O3, Al,γ-Fe2O3, Al2.667O4, FeO andα-Al2O3 were indexed in XRD patterns. For each thermite, according to the specific products, the possible equations were given. Based on the principle of the minimum free energy, the most reasonable equations were inferred from the possible reactions.展开更多
The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. T...The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.展开更多
The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were...The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.展开更多
V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated...V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.展开更多
The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the r...The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.展开更多
The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, i...The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, in addition to the formation and function of organic compounds retained in the zeolite. Analysis of reaction effluents and confined organics demonstrated a dual‐cycle reaction mechanism when employing ZSM‐5. The extent of the hydrogen transfer reaction, a secondary reac‐tion in the MTO process, varied as the catalyst‐methanol contact time was changed. In addition, 12C/13C‐methanol switch experiments indicated a relationship between the dual‐cycle mechanism and the extent of the hydrogen transfer reaction. Reactions employing a low methanol WHSV in conjunction with a long contact time favored the hydrogen transfer reaction to give alkene products and promoted the generation and accumulation of retained organic species, such as aromatics and methylcyclopentadienes, which enhance the aromatic cycle. When using higher WHSV values, the reduced contact times lessened the extent of the hydrogen transfer reaction and limited the genera‐tion of methylcyclopentadienes and aromatic species. This suppressed the aromatic cycle, such that the alkene cycle became the dominant route during the MTO reaction.展开更多
The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geo...The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.展开更多
The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their...The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysieal properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.展开更多
The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc...The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.展开更多
The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + ...The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + + G^** level. The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies, and the zeropoint energies(ZPE) of all the species were calculated. The single-point energies along the MEP were further refined at the QCISD(T)/6-311 + + G^* * level. It was found that the mechanisms of the HNCS + NH(X^3∑) reaction involve two channels producing the HNC + HNS and the N2H2 + CS products. Channel 1 plays a dominant role and the HNC + HNS are the main preduets. The reaction is exothermie.展开更多
Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the...Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.展开更多
The cathodic reaction mechanisms in CO2 corrosion of low-Cr steels were investigated by potentiodynamic polarization and galvanostatic measurements.Distinct but different dominant cathodic reactions were observed at d...The cathodic reaction mechanisms in CO2 corrosion of low-Cr steels were investigated by potentiodynamic polarization and galvanostatic measurements.Distinct but different dominant cathodic reactions were observed at different p H levels.At the higher p H level(p H>~5),H2 CO3 reduction was the dominant cathodic reaction.The reaction was under activation control.At the lower pH level(pH<~3.5),H+reduction became the dominant one and the reaction was under diffusion control.In the intermediate area,there was a transition region leading from one cathodic reaction to another.The measured electrochemical impedance spectrum corresponded to the proposed cathodic reaction mechanisms.展开更多
The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show ...The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show that the addition reaction of G with U under the conditions mainly involves the reactions of U with protonated glyoxal (p-G), protonated 2,2-dihy- droxyacetaldehyde (p-G 1) and protonated bis-hemdiol (p-G2) to form two important carbocation reactive intermediates of C-p-UG and C-p-UG1, and two important hydroxyl compounds of UG and UG1. These compounds play important roles in the formation of UG resin. According to the result of quantum chemical calculation, UG resin was synthesized successfully under weak acid conditions. The UG resin was characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), ultraviolet and visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT1R) and nuclear magnetic resonance spectroscopy (13CNMR and 1HNMR). These instrumental analytical results agree with each other and further confirm the addition reaction pathway of glyoxal with urea proposed by quantum chemical calculation.展开更多
The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction ...The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction sintering method. After sintering, the Al–AlO–MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen Mwas composed of MgO and MgAlO. Compared with specimen M, specimens Mand Mpossessed MgAlON, and its production increased with increasing aluminum addition. Under an Natmosphere, MgO, AlO, and Al in the matrix of specimens Mand Mreacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al–AlO–MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an Natmosphere, the partial pressure of oxygen is quite low; thus, when the Al–AlO–MgO composites were soaked at 580°C for an extended period, aluminum metal was transformed into AlN. With increasing temperature, AlOdiffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with AlOto form MgAlO. When the temperature was greater than(1640 ± 10)°C, AlN diffused into AlOand formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and Mg AlOat high temperatures because of their similar spinel structures.展开更多
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.
基金the Science and Technology Planning Project of Guangdong Province(2016B090934002)Guangdong Provincial Natural Science Foundation(2023A1515011640)for financial support.
文摘Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金The authors acknowledge supports from the National Key Basic Research Development Plan“973”Project(2006CB202508)the SINOPEC Project(411058,413025)the National Natural Science Foundation(21808244).
文摘The oxidative esterification of methacrolein(MAL)is an important way to prepare high-valued methyl methacrylate(MMA),but this process is ultra-complex due to the high reactivity of both C=O and C=C bonds in MAL molecule.In order to further improve MMA selectivity,the reaction network and relevant mechanisms have been proposed and profoundly investigated in this paper.Five kinds of fundamental reactions are involved in this process,including(a)the acetal reaction;(b)the aerobic oxidation of hemiacetal;(c)the alkoxylation of C=C double bond;(d)the Diels-Alder reaction;and(e)the hydrogenation reaction of unsaturated double bond.Among them,the Diels-Alder reaction of MAL is non-catalyzed,and the Brönsted acid sites or the Lewis acid sites favor promoting acetal reaction of MAL with methanol,while the alkoxylation of C=C bond with methanol is enhanced under alkaline condition.In particular,by employing the Pd-based catalysts,hydrogenation products are formed in alkaline methanol solution,hence with lower than those obtained by the Au-based catalysts.Notably,it is necessary to match the hemiacetal fromation and aerobic oxidation of hemiacetal,which is relevant with the amount and strength of acid and redox sites.Consequently,this work can provide a good guidance for the further design of both catalysts and processes in future.
基金funded by the Key Projects of Xinjiang Production and Construction Corps(2022AB007)the Key Projects of innovation team of Xinjiang eighth division Construction Corps 2023TD04)Liaoning Innovation Capability Fund(2021-NLTS-12-02).
文摘The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.
基金Project(51206081)supported by the National Natural Science Foundation of China
文摘Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results indicated that nano-Al and micro-Al were compactly wrapped by amorphous iron-oxide nanoparticles (about 20 nm), respectively. The iron-oxide showed the mass ratio of Fe to O as similar as that in Fe2O3. Thermal analyses were performed on two nanocomposites, and four simple mixtures (nano-Al+xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al+xero-Fe2O3, and micro-Al+micro-Fe2O3) were also analyzed. There were not apparent distinctions in the reactions of thermites fueled by nano-Al. For thermites fueled by micro-Al, the DSC peak temperatures of micro-Al/Xero-Fe2O3 were advanced by 68.1 ℃ and 76.8 ℃ compared with micro-Al+xero-Fe2O3 and micro-Al+micro-Fe2O3, respectively. Four thermites, namely, nano-Al/xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al/xero-Fe2O3, and micro-Al+micro-Fe2O3, were heated from ambient temperature to 1020 ℃, during which the products at 660 ℃ and 1020 ℃ were collected and analyzed by XRD. Crystals of Fe, FeAl2O4, Fe3O4,α-Fe2O3, Al,γ-Fe2O3, Al2.667O4, FeO andα-Al2O3 were indexed in XRD patterns. For each thermite, according to the specific products, the possible equations were given. Based on the principle of the minimum free energy, the most reasonable equations were inferred from the possible reactions.
基金Project(51304245)supported by the National Natural Science Foundation of ChinaProject(2014T70691)supported by the Postdoctoral Science Foundation of China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject supported by the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.
基金Project(2006AA068128)supported by the Hi-tech Research and Development Program of China
文摘The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.
基金supported by the National Natural Science Foundation of China(51306034)Key Research&Development Projects of Jiangsu Province(BE2015677)the National Basic Research Program of China(2013CB228505)~~
文摘V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.
文摘The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.
基金supported by the National Natural Science Foundation of China (91545104,21576256,21473182,21273230,21273005)the Youth Innovation Promotion Association of the Chinese Academy of Sciences~~
文摘The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, in addition to the formation and function of organic compounds retained in the zeolite. Analysis of reaction effluents and confined organics demonstrated a dual‐cycle reaction mechanism when employing ZSM‐5. The extent of the hydrogen transfer reaction, a secondary reac‐tion in the MTO process, varied as the catalyst‐methanol contact time was changed. In addition, 12C/13C‐methanol switch experiments indicated a relationship between the dual‐cycle mechanism and the extent of the hydrogen transfer reaction. Reactions employing a low methanol WHSV in conjunction with a long contact time favored the hydrogen transfer reaction to give alkene products and promoted the generation and accumulation of retained organic species, such as aromatics and methylcyclopentadienes, which enhance the aromatic cycle. When using higher WHSV values, the reduced contact times lessened the extent of the hydrogen transfer reaction and limited the genera‐tion of methylcyclopentadienes and aromatic species. This suppressed the aromatic cycle, such that the alkene cycle became the dominant route during the MTO reaction.
文摘The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.
基金This work was supported by the National Key Basic Research Special Foundation (No.2007CB815202 and No.2009CB220010) and the National Natural Science Foundation of China (No.20833008).
文摘The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysieal properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.
基金Projects(51774070,51204054)supported by the National Natural Science Foundation of ChinaProject(N150204009)supported by the Ministry of Education Basic Scientific Research Business Expenses,ChinaProject(2007CB613603)supported by the National Basic Research Program of China
文摘The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.
基金Supported by the Natural Science Foundation of Hainan Province(No. 60505) and the Doctoral Research Fund of Hainan Nor-mal University.
文摘The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + + G^** level. The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies, and the zeropoint energies(ZPE) of all the species were calculated. The single-point energies along the MEP were further refined at the QCISD(T)/6-311 + + G^* * level. It was found that the mechanisms of the HNCS + NH(X^3∑) reaction involve two channels producing the HNC + HNS and the N2H2 + CS products. Channel 1 plays a dominant role and the HNC + HNS are the main preduets. The reaction is exothermie.
基金National Natural Science Foundation of China (nos.21476226 and 21506204)National Key Projects for Fundamental Research and Development of China (2016YFB0600902)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020400)the Youth Innovation Promotion Association CAS for financial support
文摘Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.
基金financially supported by the National Natural Science Foundation of China (No. 51371034)Fundamental Research Funds for the Central Universities (No. 06500118)
文摘The cathodic reaction mechanisms in CO2 corrosion of low-Cr steels were investigated by potentiodynamic polarization and galvanostatic measurements.Distinct but different dominant cathodic reactions were observed at different p H levels.At the higher p H level(p H>~5),H2 CO3 reduction was the dominant cathodic reaction.The reaction was under activation control.At the lower pH level(pH<~3.5),H+reduction became the dominant one and the reaction was under diffusion control.In the intermediate area,there was a transition region leading from one cathodic reaction to another.The measured electrochemical impedance spectrum corresponded to the proposed cathodic reaction mechanisms.
基金Supported by the Key Program of the National Natural Science Foundation of China(No.30930074)National Natural Science Foundation of China(No.31260160)
文摘The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show that the addition reaction of G with U under the conditions mainly involves the reactions of U with protonated glyoxal (p-G), protonated 2,2-dihy- droxyacetaldehyde (p-G 1) and protonated bis-hemdiol (p-G2) to form two important carbocation reactive intermediates of C-p-UG and C-p-UG1, and two important hydroxyl compounds of UG and UG1. These compounds play important roles in the formation of UG resin. According to the result of quantum chemical calculation, UG resin was synthesized successfully under weak acid conditions. The UG resin was characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), ultraviolet and visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT1R) and nuclear magnetic resonance spectroscopy (13CNMR and 1HNMR). These instrumental analytical results agree with each other and further confirm the addition reaction pathway of glyoxal with urea proposed by quantum chemical calculation.
文摘The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction sintering method. After sintering, the Al–AlO–MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen Mwas composed of MgO and MgAlO. Compared with specimen M, specimens Mand Mpossessed MgAlON, and its production increased with increasing aluminum addition. Under an Natmosphere, MgO, AlO, and Al in the matrix of specimens Mand Mreacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al–AlO–MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an Natmosphere, the partial pressure of oxygen is quite low; thus, when the Al–AlO–MgO composites were soaked at 580°C for an extended period, aluminum metal was transformed into AlN. With increasing temperature, AlOdiffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with AlOto form MgAlO. When the temperature was greater than(1640 ± 10)°C, AlN diffused into AlOand formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and Mg AlOat high temperatures because of their similar spinel structures.