期刊文献+
共找到2,292篇文章
< 1 2 115 >
每页显示 20 50 100
Optimal Delayed Control of Nonlinear Vibration Resonances of Single Degree of Freedom System 被引量:4
1
作者 刘灿昌 季宏丽 +2 位作者 孙慧玉 裘进浩 刘露 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期49-55,共7页
The primary resonance of a single-degree-of-freedom(SDOF)system subjected to a harmonic excitation is mitigated by the method of optimal time-delay feedback control.The stable regions of the time delays and feedback g... The primary resonance of a single-degree-of-freedom(SDOF)system subjected to a harmonic excitation is mitigated by the method of optimal time-delay feedback control.The stable regions of the time delays and feedback gains are obtained from the stable conditions of eigenvalue equation.Attenuation ratio is applied for evaluating the performance of the vibration control by taking aproportion of peak amplitude of primary resonance for the suspension system with or without controllers.Taking the attenuation ratio as the objective function and the stable regions of the time delays and feedback gains as constrains,the optimal feedback gains are determined by using minimum optimal method.Finally,simulation examples are also presented. 展开更多
关键词 nonlinear vibration optimal control time delay primary resonance
下载PDF
Super-harmonic resonance of gear transmission system under stick-slip vibration in high-speed train 被引量:4
2
作者 HUANG Guan-hua XU Si-si +1 位作者 ZHANG Wei-hua YANG Cai-jin 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期726-735,共10页
This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with... This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations. 展开更多
关键词 stick-slip vibration super-harmonic resonance Hopf bifurcation gear transmission system high-speed train
下载PDF
Performance improvement of the stochastic-resonance-based tri-stableenergy harvester under random rotational vibration 被引量:2
3
作者 Tingting Zhang Yanfei Jin Yanxia Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第5期326-331,共6页
In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standa... In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered.The stationary probability density function(SPDF)of the harvester is obtained by the improved stochastic averaging.Then,with the adiabatic approximation theory,the analytical expression of signal-to-noise ratio(SNR)for the TEH is deduced to characterize stochastic resonance(SR).To enhance direct current(DC)power delivery from a rotational TEH,the influences of system parameters on SR is discussed.The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system.The TEH has higher harvesting performance under the optimal SR.That is,the optimal parameter combinations can induce optimal SR and maximize harvesting performance.Thus,the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter. 展开更多
关键词 Tri-stable energy harvesting Stochastic resonance Random rotational vibration Signal-to-noise ratio
下载PDF
Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection 被引量:1
4
作者 Zhiwei He Chenggui Yao +1 位作者 Jianwei Shuai Tadashi Nakano 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期556-563,共8页
Many animals can detect the multi-frequency signals from their external surroundings.The understanding for underlying mechanism of signal detection can apply the theory of vibrational resonance,in which the moderate h... Many animals can detect the multi-frequency signals from their external surroundings.The understanding for underlying mechanism of signal detection can apply the theory of vibrational resonance,in which the moderate high frequency driving can maximize the nonlinear system's response to the low frequency subthreshold signal.In this work,we study the roles of chemical autapse on the vibrational resonance in a single neuron for signal detection.We reveal that the vibrational resonance is strengthened significantly by the inhibitory autapse in the neuron,while it is weakened typically by the excitatory autapse.It is generally believed that the inhibitory synapse has a suppressive effect in neuronal dynamics.However,we find that the detection of the neuron to the low frequency subthreshold signal can be improved greatly by the inhibitory autapse.Our finding indicates that the inhibitory synapse may act constructively on the detection of weak signal in the brain and neuronal system. 展开更多
关键词 neuronal dynamics autapse vibrational resonance SYNCHRONIZATION time delay
下载PDF
Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam 被引量:1
5
作者 Chenxu QIANG Yuxin HAO +3 位作者 Wei ZHANG Jinqiang LI Shaowu YANG Yuteng CAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第11期1555-1570,共16页
The concept of local resonance phononic crystals proposed in recent years provides a new chance for theoretical and technical breakthroughs in the structural vibration reduction.In this paper,a novel sandwich-like pla... The concept of local resonance phononic crystals proposed in recent years provides a new chance for theoretical and technical breakthroughs in the structural vibration reduction.In this paper,a novel sandwich-like plate model with local resonator to acquire specific low-frequency bandgaps is proposed.The core layer of the present local resonator is composed by the simply supported overhanging beam,linear spring and mass block,and well connected with the upper and lower surface panels.The simply supported overhanging beam is free at right end,and an additional linear spring is added at the left end.The wave equation is established based on the Hamilton principle,and the bending wave bandgap is further obtained.The theoretical results are verified by the COMSOL finite element software.The bandgaps and vibration characteristics of the local resonance sandwich-like plate are studied in detail.The factors which could have effects on the bandgap characteristics,such as the structural damping,mass of vibrator,position of vibrator,bending stiffness of the beam,and the boundary conditions of the sandwich-like plates,are analyzed.The result shows that the stopband is determined by the natural frequency of the resonator,the mass ratio of the resonator,and the surface panel.It shows that the width of bandgap is greatly affected by the damping ratio of the resonator.Finally,it can also be found that the boundary conditions can affect the isolation efficiency. 展开更多
关键词 local resonance sandwich-like plate elastic wave bandgap vibration isolation
下载PDF
Application of ultrasonic vibration to shape-casting based on resonance vibration analysis 被引量:1
6
作者 Zong-hang Han Zhi-ming Wang +2 位作者 Zhi-ping Sun Bing-rong Zhang Wei-feng Rao 《China Foundry》 SCIE CAS CSCD 2023年第4期339-346,共8页
The application of ultrasonic vibration during the casting process has been proven to refine the microstructure and enhance the properties of the casting.By using the direct inserting method,wherein the ultrasonic hor... The application of ultrasonic vibration during the casting process has been proven to refine the microstructure and enhance the properties of the casting.By using the direct inserting method,wherein the ultrasonic horn is inserted directly into the melt,ultrasonic treatment can be utilized in the semi-continuous casting process to produce aluminum ingots with simple shapes.However,due to the attenuation of ultrasound,it is challenging to apply the direct inserting method in the die casting process to produce complex castings.Thus,in this study,the impact of ultrasonic vibration on the microstructure of a gravity die-cast AlSi9Cu3end cap was investigated by applying ultrasonic vibration on the core(indirect method).It is found that the effect of ultrasonic vibration relies greatly on the resonance mode of the core.Selection of ultrasonic vibration schemes mainly depends on the core structure,and only a strong vibration can significantly refine the microstructure of the casting.For castings with complex structures,an elaborated ultrasonic vibration design is necessary to refine the microstructure of the specified casting.In addition,strong vibration applied on the feeding channel can promote the feeding ability of casting by breaking the dendrites during solidification,and consequently reduce the shrinkage porosity. 展开更多
关键词 resonance mode ultrasonic vibration feeding channel aluminum alloy casting
下载PDF
Flexural resonance vibrations of piezoelectric ceramic tubes in Besocke-style scanners
7
作者 张辉 张淑仪 范理 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期180-185,共6页
Flexural resonance vibrations of piezoelectric ceramic tubes in Besocke-style scanners with nanometer resolution are studied by using an electro-mechanical coupling Timoshenko beam model. Meanwhile, the effects of fri... Flexural resonance vibrations of piezoelectric ceramic tubes in Besocke-style scanners with nanometer resolution are studied by using an electro-mechanical coupling Timoshenko beam model. Meanwhile, the effects of friction, the first moment, and moment of inertia induced by mass loads are considered. The predicted resonance frequencies of the ceramic tubes are sensitive to not only the mechanical parameters of the scanners, but also the friction acting on the attached shaking ball and corresponding bending moment on the tubes. The theoretical results are in excellent agreement with the related experimental measurements. This model and corresponding results are applicable for optimizing the structures and performances of the scanners. 展开更多
关键词 flexural resonance vibration Timoshenko beam theory Besocke-style scanner
下载PDF
Study of Stability and Vibration Reduction in Multi-Tool Ultrasonic Machining under Simultaneous Primary and Internal Resonance
8
作者 Yaser Salah Hamed Mohamed Syed Abd Elkader Hamdi Mahmoud Genedi 《Applied Mathematics》 2012年第1期1-11,共11页
The main object of this paper is the mathematical study of the vibration behavior in ultrasonic machining (USM) described by non-linear differential equations. The ultrasonic machining (USM) consists of the tool holde... The main object of this paper is the mathematical study of the vibration behavior in ultrasonic machining (USM) described by non-linear differential equations. The ultrasonic machining (USM) consists of the tool holder and the absor-bers representing the tools. This leads to four-degree-of-freedom system subject to multi-external excitation forces. The aim of this project is the reduction of the vibrations in the tool holder and have reasonable amplitudes for the tools represented by the multi-absorbers. Multiple scale perturbation method is applied to obtain the solution up to the second order approximation and to study the stability of the steady state solution near different simultaneous resonance cases. The resulting different resonance cases are reported and studied numerically. The stability of the steady state solution near the selected resonance cases is studied applying both frequency response equations and phase-plane technique. The effects of the different parameters of the system and the absorbers on the system behavior are studied numerically. Optimum working conditions for the tools were obtained. Comparison with the available published work is reported. 展开更多
关键词 Passive vibration Control Stability resonance ULTRASONIC MACHINING (USM)
下载PDF
Effects of electric field on vibrational resonances in Hindmarsh-Rose neuronal systems for signal detection
9
作者 李晓霞 薛小鹏 +3 位作者 刘栋杰 余天意 何倩倩 徐桂芝 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期730-741,共12页
Changes in the concentration of charged ions in neurons can generate induced electric fields,which can further modulate cell membrane potential.In this paper,Fourier coefficients are used to investigate the effect of ... Changes in the concentration of charged ions in neurons can generate induced electric fields,which can further modulate cell membrane potential.In this paper,Fourier coefficients are used to investigate the effect of electric field on vibrational resonance for signal detection in a single neuron model and a bidirectionally coupled neuron model,respectively.The study found that the internal electric field weakens vibrational resonance by changing two factors,membrane potential and phase-locked mode,while the periodic external electric field of an appropriate frequency significantly enhances the vibrational resonance,suggesting that the external electric field may play a constructive role in the detection of weak signals in the brain and neuronal systems.Furthermore,when the coupling of two neurons is considered,the effect of the electric field on the vibrational resonance is similar to that of a single neuron.The paper also illustrates the effect of electric field coupling on vibrational resonance.This study may provide a new theoretical basis for understanding information encoding and transmission in neurons. 展开更多
关键词 electric field Fourier-coefficient neuronal dynamics vibrational resonance
下载PDF
Monitoring the Coldhead of Magnetic Resonance Imaging Systems by Means of Vibration Analysis
10
作者 Jan Beyer Johannes Krug Michael Friebe 《Journal of Sensor Technology》 2017年第3期39-51,共13页
Magnetic resonance imaging (MRI) systems require a cooling close to the absolute zero point. This is necessary to avoid thermal losses due to the extremely high currents in the coils of the electromagnet used to gener... Magnetic resonance imaging (MRI) systems require a cooling close to the absolute zero point. This is necessary to avoid thermal losses due to the extremely high currents in the coils of the electromagnet used to generate the static magnetic field. The cooling is usually achieved using helium based refrigerating machine. The coldhead is an important and critical mechanical component in this system. An inefficient or failed coldhead can lead to severe damages to the MRI system or to the loss of helium. Hence, a continuous and reliable monitoring of this system component is necessary but not always available. To tackle this problem, we propose a monitoring system by means of analyzing the structure-borne noises caused by the mechanical activities of the coldhead. For this purpose, a measurement system based on piezoelectric elements was designed and implemented. Vibrations were measured at various locations at the MRI scanner with and without MR imaging. In all positions, the function of the coldhead could be detected. Hence, the developed system is suitable for monitoring an MRI’s coldhead without directly accessing the MR scanner’s hardware or software. For a future long-term monitoring, the aim is to predict a failure of the MRI’s coldhead based on changes in the vibrations signals. 展开更多
关键词 MACHINE MONITORING Magnetic resonance Imaging PIEZOELECTRIC SENSORS vibrations
下载PDF
Vibrational resonance in globally coupled bistable systems under the noise background
11
作者 刘江令 李朝润 +1 位作者 高海玲 杜鲁春 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期303-307,共5页
Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR... Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems. 展开更多
关键词 vibrational resonance globally coupled bistable systems power spectral amplification noise
下载PDF
A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF A PRIMARY RESONANCE OF A THREE CIRCULAR PLATES TORSION VIBRATION SYSTEM
12
作者 杨志安 邱家俊 李骊 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第6期539-546,共8页
The method of averaging is applied in this paper to deal with primary resonance of a three circular plates torsion vibration system having cubic nonlinearities which is excited by a simple-harmonic excitation. Bifurca... The method of averaging is applied in this paper to deal with primary resonance of a three circular plates torsion vibration system having cubic nonlinearities which is excited by a simple-harmonic excitation. Bifurcation equation of the steady state response is obtained and its singularity analysis is given. The results of theoretical analysis are shown to be in good agreement with experimental ones. 展开更多
关键词 three circular plates torsion vibration method of averaging primary resonance singularity theory JUMP
全文增补中
Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures 被引量:6
13
作者 郁殿龙 王刚 +2 位作者 刘耀宗 温激鸿 邱静 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第2期266-271,共6页
The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically ... The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases, The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals. 展开更多
关键词 phononic crystals flexural vibration band gaps locally resonant
下载PDF
PARALLEL FINITE ELEMENT ANALYSIS OF HIGH FREQUENCY VIBRATIONS OF QUARTZ CRYSTAL RESONATORS ON LINUX CLUSTER 被引量:4
14
作者 Ji Wang Yu Wang +3 位作者 Wenke Hu Wenhua Zhao Jianke Du Dejin Huang 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第6期549-554,共6页
Quartz crystal resonators are typical piezoelectric acoustic wave devices for frequency control applications with mechanical vibration frequency at the radio-frequency (RF) range. Precise analyses of the vibration a... Quartz crystal resonators are typical piezoelectric acoustic wave devices for frequency control applications with mechanical vibration frequency at the radio-frequency (RF) range. Precise analyses of the vibration and deformation are generally required in the resonator design and improvement process. The considerations include the presence of electrodes, mountings, bias fields such as temperature, initial stresses, and acceleration. Naturally, the finite element method is the only effective tool for such a coupled problem with multi-physics nature. The main challenge is the extremely large size of resulted linear equations. For this reason, we have been employing the Mindlin plate equations to reduce the computational difficulty. In addition, we have to utilize the parallel computing techniques on Linux clusters, which are widely available for academic and industrial applications nowadays, to improve the computing efficiency. The general principle of our research is to use open source software components and public domain technology to reduce cost for developers and users on a Linux cluster. We start with a mesh generator specifically for quartz crystal resonators of rectangular and circular types, and the Mindlin plate equations are implemented for the finite element analysis. Computing techniques like parallel processing, sparse matrix handling, and the latest eigenvalue extraction package are integrated into the program. It is clear from our computation that the combination of these algorithms and methods on a cluster can meet the memory requirement and reduce computing time significantly. 展开更多
关键词 PLATE vibration QUARTZ resonATOR FEM parallel computing
下载PDF
Inter-well internal resonance analysis of rectangular asymmetric cross-ply bistable composite laminated cantilever shell under transverse foundation excitation
15
作者 Lele REN Wei ZHANG Yufei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1353-1370,共18页
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ... The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell. 展开更多
关键词 bistable composite laminated cantilever shell inter-well internal resonance primary resonance chaotic dynamic snap-through complex nonlinear vibration
下载PDF
Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes
16
作者 Donghai HAN Qi JIA +4 位作者 Yuanyu GAO Qiduo JIN Xin FANG Jihong WEN Dianlong YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1821-1840,共20页
To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design me... To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design method is proposed for the longitudinal and transverse wave control of fluid-conveying pipes,and a novel periodic structure unit model is constructed for vibration reduction.Based on the bandgap vibration reduction mechanism of the acoustic metamaterial periodic structure,the material parameters,structural parameters,and the arrangement interval of the periodic structure unit are optimized.The finite element method(FEM)is used to predict the vibration transmission characteristics of the fluid-conveying pipe installed with the vibration reduction periodic structure.Then,the wave/spectrum element method(WSEM)and experimental test are used to verify the calculated results above.Lastly,the vibration attenuation characteristics of the structure under different conditions,such as rubber material parameters,mass ring material,and fluid-structure coupling effect,are analyzed.The results show that the structure can produce a complete bandgap of 46 Hz-75 Hz in the low-frequency band below 100 Hz,which can effectively suppress the low broadband vibration of the fluidconveying pipe.In addition,a high damping rubber material is used in the design of the periodic structure unit,which realizes the effective suppression of each formant peak of the pipe,and improves the vibration reduction effect of the fluid-conveying pipe.Meanwhile,the structure has the effect of suppressing both bending vibration and longitudinal vibration,and effectively inhibits the transmission of transverse waves and longitudinal waves in the pipe.The research results provide a reference for the application of acoustic metamaterials in the multi-directional vibration control of fluid-conveying pipes. 展开更多
关键词 fluid-conveying pipe acoustic metamaterial multi-directional vibration reduction local resonance
下载PDF
Ab initio potential energy surface and anharmonic vibration spectrum of NF_(3)^(+)
17
作者 陈艳南 徐建刚 +3 位作者 范江鹏 马双雄 郭甜 张云光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期327-333,共7页
Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction... Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory. 展开更多
关键词 ab initio methods potential energy surfaces vibration frequencies coupled resonance infrared spectra
下载PDF
Auto-parametric resonance of a continuous-beam-bridge model under two-point periodic excitation:an experimental investigation and stability analysis
18
作者 Li Yuchun Shen Chao +1 位作者 Liu Wei Li Dong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期445-454,共10页
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ... The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed. 展开更多
关键词 auto-parametric resonance continuous beam bridge model two-point excitation experimental investigation stability analysis vibration of Volgograd Bridge
下载PDF
Impact vibration properties of locally resonant fluid-conveying pipes 被引量:2
19
作者 Bing Hu Fu-Lei Zhu +4 位作者 Dian-Long Yu Jiang-Wei Liu Zhen-Fang Zhang Jie Zhong Ji-Hong Wen 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期313-321,共9页
Fluid-conveying pipe systems are widely used in various equipments to transport matter and energy.Due to the fluid–structure interaction effect,the fluid acting on the pipe wall is easy to produce strong vibration an... Fluid-conveying pipe systems are widely used in various equipments to transport matter and energy.Due to the fluid–structure interaction effect,the fluid acting on the pipe wall is easy to produce strong vibration and noise,which have a serious influence on the safety and concealment of the equipment.Based on the theory of phononic crystals,this paper studies the vibration transfer properties of a locally resonant(LR)pipe under the condition of fluid–structure interaction.The band structure and the vibration transfer properties of a finite periodic pipe are obtained by the transfer matrix method.Further,the different impact excitation and fluid–structure interaction effect on the frequency range of vibration attenuation properties of the LR pipe are mainly considered and calculated by the finite element model.The results show that the existence of a low-frequency vibration bandgap in the LR pipe can effectively suppress the vibration propagation under external impact and fluid impact excitation,and the vibration reduction frequency range is near the bandgap under the fluid–structure interaction effect.Finally,the pipe impact experiment was performed to verify the effective attenuation of the LR structure to the impact excitation,and to validate the finite element model.The research results provide a technical reference for the vibration control of the fluid-conveying pipe systems that need to consider blast load and fluid impact. 展开更多
关键词 locally resonant pipe fluid-structure interaction transfer matrix method impact vibration properties
下载PDF
Optical Evaluation of Vibrations in a Roof by the LPD Method
20
作者 Aníbal Valera Guido Castillo Kevin Mejía 《Journal of Civil Engineering and Architecture》 2024年第11期540-544,共5页
In this work,we present the results of the optical evaluation of resonance vibrations in a conventional roof.On this occasion,we took advantage of having an ordinary booth near the laboratory,making it easier for us t... In this work,we present the results of the optical evaluation of resonance vibrations in a conventional roof.On this occasion,we took advantage of having an ordinary booth near the laboratory,making it easier for us to conduct this evaluation.The roof in question has a square geometry and is apparently made of concrete.Following our usual LPD(laser photo deflection)procedure,of exciting the vibrations of the structure through sound and detecting the response optically,we obtain by resonance the first 6 roof’s Eigen oscillations,the same ones that are identified as Modes(1,1),(1,2),(2,2),(1,3),(2,3)and(3,3).The occurrence of these modes in this work is justified in a first approximation through the classical acoustic resonator theory. 展开更多
关键词 STRUCTURAL vibrations resonance SOUND EXCITATION LPD
下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部