Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens con...Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface(SPAFS) and alternating stress intensity factor(ASIF) were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.展开更多
In order to review the effect of partial remelting time on the morphology of initial carbides, semisolid ingots of hypereutectic high Cr17 cast iron were remelted at 1270℃ for four different times, and the changing c...In order to review the effect of partial remelting time on the morphology of initial carbides, semisolid ingots of hypereutectic high Cr17 cast iron were remelted at 1270℃ for four different times, and the changing characteristics of shape factor and the equivalent diameter of initial carbides were analyzed quantitatively using a Leica image analyzer. The results indicate that firstly, the evolution process of the initial carbides' morphology undergoes melting, spheroidization and refining during the partial remelting; secondly, the solute diffusion and interface tension take dominant roles at the primary and the middle-final stages respectively in the process of initial carbide evolution; finally, a perfect structure can be obtained by remelting semisolid ingots at 1270℃ for 15 min.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51305350)the Natural Science Foundation of Shaanxi Province(No.2013JM6011)the Basic Researches Foundation of NWPU(No.3102014JCQ01045)
文摘Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface(SPAFS) and alternating stress intensity factor(ASIF) were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.
文摘In order to review the effect of partial remelting time on the morphology of initial carbides, semisolid ingots of hypereutectic high Cr17 cast iron were remelted at 1270℃ for four different times, and the changing characteristics of shape factor and the equivalent diameter of initial carbides were analyzed quantitatively using a Leica image analyzer. The results indicate that firstly, the evolution process of the initial carbides' morphology undergoes melting, spheroidization and refining during the partial remelting; secondly, the solute diffusion and interface tension take dominant roles at the primary and the middle-final stages respectively in the process of initial carbide evolution; finally, a perfect structure can be obtained by remelting semisolid ingots at 1270℃ for 15 min.