Marine biofouling is an urgent global problem in the process of ocean exploitation and utilization.In our work,a series of zinc-based acrylate copolymers(ACZn-x)were designed and synthesized using benzoic acid,zinc ox...Marine biofouling is an urgent global problem in the process of ocean exploitation and utilization.In our work,a series of zinc-based acrylate copolymers(ACZn-x)were designed and synthesized using benzoic acid,zinc oxide(ZnO)and a random quaternion copolymer consisting of ethyl acrylate(EA),butyl acrylate(BA),acrylic acid(AA)and methacrylic acid(MAA)by free radical polymerization and dehydration condensation.The ACZn-x with a zinc benzoate side chain is able to hydrolyze in natural seawater under static conditions,resulting in the formation of a smooth surface.We investigated and confirmed the antifouling(AF)behavior of ACZn-x in the laboratory and revealed that they have better antibacterial(86%for S.aureus and 72%for E.coli)and anti-algal(≥60.1%for N.closterium and≥67.5%for P.subcordiformis)activities.We also assessed the marine AF properties of ACZn-x and corresponding coatings in Qingdao,China;the ACZn-x exhibited ideal AF properties with little silt and biological mucosa adhered to the ACZn-x surface after 6 months,and corresponding coatings exhibited little biofouling after 16 months in the ocean.Importantly,possible AF mechanisms were further proposed at the cellular level.These results could be helpful for the development and application of effective AF coatings.展开更多
Purpose: The study investigated the impact of dietary habits, specifically soda, milk kefir, water kefir, almond milk, and distilled water (control) consumption, on the microhardness of gingiva-coloured composite and ...Purpose: The study investigated the impact of dietary habits, specifically soda, milk kefir, water kefir, almond milk, and distilled water (control) consumption, on the microhardness of gingiva-coloured composite and acrylic denture bases. Methods: Materials included gingiva-coloured composite (Fusion Universal G1), acrylic (Imicryl), and subdivided Procryla group. Subgroups comprised 15 and 30-minute heat polymerized (Pro15, Pro30), and 1 wt% (Pro1Z) and 3 wt% (Pro3Z) zirconium added groups. Immersed in beverages for 1, 7, and 14 days, pH and microhardness were assessed. SEM examined random samples. Statistical analysis used repeated measures ANOVA, and post hoc tests (p Results: The gingiva-coloured composites displayed noteworthy time-associated microhardness changes (p 0.05). Despite variable pH levels in beverages, no substantial group interaction effects were observed (p > 0.05). Initial microhardness rankings shifted after a 14-day immersion. Conclusions: Gingiva-coloured composite exhibited the highest microhardness pre- and post-immersion, followed by Procryla30 and Imicryl groups. .展开更多
Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects ...Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.展开更多
To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was d...To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including11 environmental factors from 567 cities.A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction.A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt%NaCl solution as output.The model improves accuracy compared to supervised learning algorithms model(support vector machines model).The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings,and may also serve as a reference to evaluate the aging performance of other organic coatings.展开更多
Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, an...Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, and surgical treatment usually consists of excising the cyst and filling the tunnel with bone. The aim of this study was to evaluate the results of filling the tunnel with acrylic cement. Hypothesis: Filling the tibial bone tunnel with acrylic cement should eliminate communication between the joint cavity and the pre-tibial surface and prevent cyst recurrence. Patients and Methods: This retrospective series is composed of 13 patients, 9 men and 4 women, mean age 48.5 years (31 to 64) operated on between 2011 and 2019 for an intra- and extraosseous synovial cyst consecutive to the tibial tunnel of an ACL graft. Between 1983 and 2016, 12 of the patients had had a bone graft without bone block fixation (DI-DT or Mac Intosh) and one patient, a bone-bone transplant (KJ). The cyst was of variable size, located on the anteromedial aspect of the proximal end of the tibia, and often painful, warranting consultation. At the time of the initial operation, 9 patients had undergone meniscectomies (6 medial, 2 lateral, 1 double). In 7 knees, there were 7 cartilage lesions in the femorotibial and/or patellofemoral compartments (one stage 1 lesion, 2 stage 2 lesions, 4 stage 3 lesions, and no stage 4 lesions). Only 2 knees had neither cartilage nor meniscus lesions. After curettage of the bone tunnel /− removal of the non-resorbed or PEEK interference screw, the tunnel was filled with acrylic cement /− reinforced with a ligament staple to prevent expulsion. All patients underwent regular follow-up consultations until recovery. Results: At a maximum follow-up of 8 years, only 1 cyst recurred, representing a 7.69% failure rate. It was reoperated with another technique, which involved filling the tibial bone tunnel with bone graft taken from a half-bank head. After recovery, the cyst healed definitively. All patients were able to return to their previous activity within 15 days of surgery. Conclusion: Filling the tibial tunnel with acrylic cement reinforced /− with a ligament staple is a reliable and rapid solution for the treatment of intra- and extra-articular synovial cysts in relation to the tibial tunnel of ACL grafts.展开更多
By means of initiation of the high temperature and shearing stress of an extruder,we synthesized the graft copolymer of starch with acrylate monomers based on the simple dry method.The eff...By means of initiation of the high temperature and shearing stress of an extruder,we synthesized the graft copolymer of starch with acrylate monomers based on the simple dry method.The effects of reaction conditions on graft copolymerization were discussed. Grafted starch used as a compatibilizer for the blend system of starch and polyethylene was further investigated. The results indicate that grafted starch as a compatibilizer can improve the mechanical properties and rheologic properties of the blend of starch and polyethylene.展开更多
Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolyme...Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV (Ultraviolet-visible) irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact angle on the membrane surface decreases with the increase of methyl acrylate graft degree, which indicated that the hydrophilicity of graft copolymer membranes was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copolymer membranes.展开更多
In order to prepare hydrophobic waterborne polyurethane coatings with better performances, the silicon-containing waterborne polyurethane(SiWPU) with functional chain extender hydroxyethyl acrylate(HEA) was prepar...In order to prepare hydrophobic waterborne polyurethane coatings with better performances, the silicon-containing waterborne polyurethane(SiWPU) with functional chain extender hydroxyethyl acrylate(HEA) was prepared first, and then a series of silicon&fluorine-containing polyurethane/acrylate(FSiPUA) emulsions were obtained with flourine containing acrylic monomer by seed emulsion polymerization, introducing micro-nano SiO2 into FSiPUA emulsion to make the final hybrid emulsion. The properties of Si WPU, FSiPUA and SiO2/FSiPUA were investigated by fourier transform infrared spectra(FTIR), transmission electron microscope(TEM), Scanning Electron Microscope(SEM) and some other analytical methods. The results revealed that FSiPUA emulsion particles possessed composite core-shell structure and FSiPUA films with suitable ratio performed better than Si WPU films in hardness, water resistance and solvent resistance. The SiO2/FSiPUA films with micro-nano dual roughness structure showed a water contact angle of 136° with good resistance to acid and alkali.展开更多
Unsaturated polyester resin (UPR)/acrylate-terminated polyurethane (ATPU)/organo-modified montmorillonite (OMMT) nanocomposites were prepared by the in situ intercalative polymerization method. Samples were prep...Unsaturated polyester resin (UPR)/acrylate-terminated polyurethane (ATPU)/organo-modified montmorillonite (OMMT) nanocomposites were prepared by the in situ intercalative polymerization method. Samples were prepared by the sequential mixing, i.e. mixture of the ATPU and styrene (S) and OMMT were prepared in the first step; UPR was then added to the pre-intercalates of ATPU/S/OMMT. Results indicate that the mechanical properties and thermal properties of UPR/ATPU/OMMT nanocomposites greatly depend on the amount of ATPU and OMMT. Results show that the addition of ATPU could increase the impact strength of UPR/ATPU composites, but the tensile strength, flexural strength and heat resistance of the materials are obviously decreased. When the weight ratio between UPR, ATPU and OMMT were 82:15:3, the impact strength and heat distortion-temperature of nanocomposite were greatly improved, meanwhile there was little change for other properties of the nanocomposites. The synergistic enhancement effects of ATPU and OMMT on the composites were observed. The structures and morphology of the composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.展开更多
Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprol...Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.展开更多
The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylaterubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin ...The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylaterubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin to acrylate rubberand its incompatible blend can cause a remarkable improvement in the temperature dependence of the loss tangent. As a result, the present blends are very good damping materials.展开更多
A novel ohthalazinone modified epoxy acrylate resin for the high temperature resistant ultravioet (UV) curable coating.was syn-thesized.The methacrylated epoxy resins obtained were utilized to UV radiation curing by...A novel ohthalazinone modified epoxy acrylate resin for the high temperature resistant ultravioet (UV) curable coating.was syn-thesized.The methacrylated epoxy resins obtained were utilized to UV radiation curing by taking 2.5% (wt%) of photoinitiator in combination with 20% (wt%) of diluent, and generated the interpenetraring polymer networks. The cured film had good thermal and chemical stability.展开更多
A novel UV-curable prepolymer polypropyleneglycol diglycidyl ether diacrylate (PPGGEA) was synthesized by utilizing polypropyleneglycol diglycidyl ether (PPGGE) and acrylic acid (AA) as starting materials, N, N-...A novel UV-curable prepolymer polypropyleneglycol diglycidyl ether diacrylate (PPGGEA) was synthesized by utilizing polypropyleneglycol diglycidyl ether (PPGGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were in the following: the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ~C, and the molar ratio of PPGGE to AA was 1:2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-cured initiator was added to the synthesized PPGGEA to prepare a kind of UV-cured coating. The mechanical properties of the UV-cured films were determined, giving 29.99 MPa of tensile strength, 834.27 MPa of the Young's modulus and 5.66% of elongation at tear.展开更多
The PAL was synthesized with BA,MMA and some monomers containing carboxyl groups(for example,acrylic acid(AA) and methacrylic acid(MAA)) as co-monomers by semi-continuous seeded emulsion polymerization technique...The PAL was synthesized with BA,MMA and some monomers containing carboxyl groups(for example,acrylic acid(AA) and methacrylic acid(MAA)) as co-monomers by semi-continuous seeded emulsion polymerization technique.The influences of alkalinization temperature,the feeding manner of AA or MAA on the particles size,rheological properties and carboxyl distribution of the latex were discussed,and the rheological mechanism was analyzed.The experimental results show that the PAL system has preferable viscosity and particle size when the alkalinization temperature is 50 ℃.Different distribution of carboxyl group in the particles and different resultant rheological properties are obtained by different feeding manner of AA or MAA into the system.The TEM images show that the particle is a smooth globe with carboxyl group concentrating on the surface and stabilized with electric double layer and nonionic adsorbed layer.The concentration of carboxyl functional group on the surface of particles can be achieved by the specific polymerization technique.The rheologyical properties are determined by accretion of particle volume and variation of the two phase volume ratio resulted from the carboxyl group spreading layer.展开更多
The production of acrylates from biomass-originated lactic acid is of extraordinary importance, to overcome the increasing worldwide shortage of petroleum. In this study, the catalytic dehydration of methyl lactate ov...The production of acrylates from biomass-originated lactic acid is of extraordinary importance, to overcome the increasing worldwide shortage of petroleum. In this study, the catalytic dehydration of methyl lactate over a calcium sulfate catalyst, with various promoters, has been carried out to identify potential catalyst/promoter combinations for acrylate production. The best catalyst for methyl acrylate formation in this study has been calcium sulfate, with cupric sulfate and phosphates as promoters. The optimal mass ratio of m(CaSOa) : m(CuSOa) : m(Na2HPO4) : m(KH2PO4) is 150.0 : 13.8 : 2.5 : 1.2. Effects of carrier gas, reaction temperature, feed concentration as well as contact time on the dehydration of methyl lactate have been investigated. With nitrogen as a carrier gas, a combined yield of acrylic acid and methyl acrylate is 63.9% from 60% (by mass) methyl lactate at 400℃ with 7.7 seconds contact time.展开更多
Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indi...Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indicated thatthe polymerization could be completed in about 30 min and produce polymer with high molecular weight(10~6~10~7).It wasfound that monomer droplets are the main sites for the polymerization(nucleation).With the increase of DMPAconcentration,polymerization rate(R_p)reaches a maximum value while molecular weight of the produced polymer has anadverse result,but the dependence of R_p on incident light intensity is similar.Influences of other parameters such asmonomer concentration,emulsifier content and reaction temperature,etc.were also studied.At lower pH values of waterphase,R_p depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomer.Athigher pH,R_p shows a slight dependence on pH.展开更多
Polyacrylonitrile-block-poly(methyl acrylate)(P(AN-b-MA)) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization employing macro-RAFT agent (PAN-RAFT) as the chain transfer...Polyacrylonitrile-block-poly(methyl acrylate)(P(AN-b-MA)) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization employing macro-RAFT agent (PAN-RAFT) as the chain transfer agent and azobis(isobutyronitrile) (AIBN) as the initiator. A linear relationship between ln([M]0/[M]1) and reaction time was observed. The molecular structure of P(AN-b-MA) was characterized by ^1H-NMR, element analysis, FTIR and SEC. The molecular weight distribution (MWD) was less than 1.40, the Mn could be controled from 0.733 to 4.834×10^4, and the molar content of MA in P(AN-b-MA) were from 15.6 to 75.0 percentage, respectively.展开更多
UV curable hyperbranched prepolymers based on amine-ester, ester-amide and ether-amide started with AB_2-type monomers have been prepared by the authors. A series of work on allyl ether maleate hyperbranched polyester...UV curable hyperbranched prepolymers based on amine-ester, ester-amide and ether-amide started with AB_2-type monomers have been prepared by the authors. A series of work on allyl ether maleate hyperbranched polyesters for UV curing coatings by Hult and his colleagues has been reported. However, the UV cured films from those materials are all flammable when attached to fire without addition of flame retardants.展开更多
A novel UV-curable prepolymer hexanediol diglycidyl ether diacrylate (HDGEA) was synthesized by utilizing hexanediol diglycidyl ether (HDGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine ...A novel UV-curable prepolymer hexanediol diglycidyl ether diacrylate (HDGEA) was synthesized by utilizing hexanediol diglycidyl ether (HDGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimal synthetic conditions were that the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ℃, and the molar ratio of HDGE to AA was 1︰2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-curing initiator was added to the synthesized HDGEA to prepare a kind of UV-curing coating. The mechanical properties of the UV-cured films were determined, giving 31.87 MPa of tensile strength, 871.88 MPa of Young's modulus and 6.77% of elongation at tear.展开更多
基金supported by the National Key Research and Development Project(No.2019YFC0312101)the Scientific Research Project of Sanya Yazhou Bay Science and Technology City Administration(No.SKJC2020-01-015)the Hainan Provincial Key Research and Development Project(No.ZDYF2021GXJS029)。
文摘Marine biofouling is an urgent global problem in the process of ocean exploitation and utilization.In our work,a series of zinc-based acrylate copolymers(ACZn-x)were designed and synthesized using benzoic acid,zinc oxide(ZnO)and a random quaternion copolymer consisting of ethyl acrylate(EA),butyl acrylate(BA),acrylic acid(AA)and methacrylic acid(MAA)by free radical polymerization and dehydration condensation.The ACZn-x with a zinc benzoate side chain is able to hydrolyze in natural seawater under static conditions,resulting in the formation of a smooth surface.We investigated and confirmed the antifouling(AF)behavior of ACZn-x in the laboratory and revealed that they have better antibacterial(86%for S.aureus and 72%for E.coli)and anti-algal(≥60.1%for N.closterium and≥67.5%for P.subcordiformis)activities.We also assessed the marine AF properties of ACZn-x and corresponding coatings in Qingdao,China;the ACZn-x exhibited ideal AF properties with little silt and biological mucosa adhered to the ACZn-x surface after 6 months,and corresponding coatings exhibited little biofouling after 16 months in the ocean.Importantly,possible AF mechanisms were further proposed at the cellular level.These results could be helpful for the development and application of effective AF coatings.
文摘Purpose: The study investigated the impact of dietary habits, specifically soda, milk kefir, water kefir, almond milk, and distilled water (control) consumption, on the microhardness of gingiva-coloured composite and acrylic denture bases. Methods: Materials included gingiva-coloured composite (Fusion Universal G1), acrylic (Imicryl), and subdivided Procryla group. Subgroups comprised 15 and 30-minute heat polymerized (Pro15, Pro30), and 1 wt% (Pro1Z) and 3 wt% (Pro3Z) zirconium added groups. Immersed in beverages for 1, 7, and 14 days, pH and microhardness were assessed. SEM examined random samples. Statistical analysis used repeated measures ANOVA, and post hoc tests (p Results: The gingiva-coloured composites displayed noteworthy time-associated microhardness changes (p 0.05). Despite variable pH levels in beverages, no substantial group interaction effects were observed (p > 0.05). Initial microhardness rankings shifted after a 14-day immersion. Conclusions: Gingiva-coloured composite exhibited the highest microhardness pre- and post-immersion, followed by Procryla30 and Imicryl groups. .
文摘Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.
基金the National Key R&D Program of China(2023YFB3812901)the Postdoctoral Fellowship Program of CPSF(No.GZC20230239)+1 种基金the China Postdoctoral Science Foundation(No.2023M740219)the National Natural Science Foundation of China(No.22209094)。
文摘To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including11 environmental factors from 567 cities.A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction.A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt%NaCl solution as output.The model improves accuracy compared to supervised learning algorithms model(support vector machines model).The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings,and may also serve as a reference to evaluate the aging performance of other organic coatings.
文摘Introduction: Synovial cyst of the tibial tunnel in connection with anterior cruciate ligament (ACL) reconstruction is a rare but particularly troublesome complication. Medical treatment is often doomed to failure, and surgical treatment usually consists of excising the cyst and filling the tunnel with bone. The aim of this study was to evaluate the results of filling the tunnel with acrylic cement. Hypothesis: Filling the tibial bone tunnel with acrylic cement should eliminate communication between the joint cavity and the pre-tibial surface and prevent cyst recurrence. Patients and Methods: This retrospective series is composed of 13 patients, 9 men and 4 women, mean age 48.5 years (31 to 64) operated on between 2011 and 2019 for an intra- and extraosseous synovial cyst consecutive to the tibial tunnel of an ACL graft. Between 1983 and 2016, 12 of the patients had had a bone graft without bone block fixation (DI-DT or Mac Intosh) and one patient, a bone-bone transplant (KJ). The cyst was of variable size, located on the anteromedial aspect of the proximal end of the tibia, and often painful, warranting consultation. At the time of the initial operation, 9 patients had undergone meniscectomies (6 medial, 2 lateral, 1 double). In 7 knees, there were 7 cartilage lesions in the femorotibial and/or patellofemoral compartments (one stage 1 lesion, 2 stage 2 lesions, 4 stage 3 lesions, and no stage 4 lesions). Only 2 knees had neither cartilage nor meniscus lesions. After curettage of the bone tunnel /− removal of the non-resorbed or PEEK interference screw, the tunnel was filled with acrylic cement /− reinforced with a ligament staple to prevent expulsion. All patients underwent regular follow-up consultations until recovery. Results: At a maximum follow-up of 8 years, only 1 cyst recurred, representing a 7.69% failure rate. It was reoperated with another technique, which involved filling the tibial bone tunnel with bone graft taken from a half-bank head. After recovery, the cyst healed definitively. All patients were able to return to their previous activity within 15 days of surgery. Conclusion: Filling the tibial tunnel with acrylic cement reinforced /− with a ligament staple is a reliable and rapid solution for the treatment of intra- and extra-articular synovial cysts in relation to the tibial tunnel of ACL grafts.
文摘By means of initiation of the high temperature and shearing stress of an extruder,we synthesized the graft copolymer of starch with acrylate monomers based on the simple dry method.The effects of reaction conditions on graft copolymerization were discussed. Grafted starch used as a compatibilizer for the blend system of starch and polyethylene was further investigated. The results indicate that grafted starch as a compatibilizer can improve the mechanical properties and rheologic properties of the blend of starch and polyethylene.
文摘Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV (Ultraviolet-visible) irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact angle on the membrane surface decreases with the increase of methyl acrylate graft degree, which indicated that the hydrophilicity of graft copolymer membranes was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copolymer membranes.
基金Funded by the National High Technology Research and Development Program("863"Program)(No.2003AA305071)
文摘In order to prepare hydrophobic waterborne polyurethane coatings with better performances, the silicon-containing waterborne polyurethane(SiWPU) with functional chain extender hydroxyethyl acrylate(HEA) was prepared first, and then a series of silicon&fluorine-containing polyurethane/acrylate(FSiPUA) emulsions were obtained with flourine containing acrylic monomer by seed emulsion polymerization, introducing micro-nano SiO2 into FSiPUA emulsion to make the final hybrid emulsion. The properties of Si WPU, FSiPUA and SiO2/FSiPUA were investigated by fourier transform infrared spectra(FTIR), transmission electron microscope(TEM), Scanning Electron Microscope(SEM) and some other analytical methods. The results revealed that FSiPUA emulsion particles possessed composite core-shell structure and FSiPUA films with suitable ratio performed better than Si WPU films in hardness, water resistance and solvent resistance. The SiO2/FSiPUA films with micro-nano dual roughness structure showed a water contact angle of 136° with good resistance to acid and alkali.
基金This research was supported by the Science and Technology Key Project of Guangdong(A1070203).
文摘Unsaturated polyester resin (UPR)/acrylate-terminated polyurethane (ATPU)/organo-modified montmorillonite (OMMT) nanocomposites were prepared by the in situ intercalative polymerization method. Samples were prepared by the sequential mixing, i.e. mixture of the ATPU and styrene (S) and OMMT were prepared in the first step; UPR was then added to the pre-intercalates of ATPU/S/OMMT. Results indicate that the mechanical properties and thermal properties of UPR/ATPU/OMMT nanocomposites greatly depend on the amount of ATPU and OMMT. Results show that the addition of ATPU could increase the impact strength of UPR/ATPU composites, but the tensile strength, flexural strength and heat resistance of the materials are obviously decreased. When the weight ratio between UPR, ATPU and OMMT were 82:15:3, the impact strength and heat distortion-temperature of nanocomposite were greatly improved, meanwhile there was little change for other properties of the nanocomposites. The synergistic enhancement effects of ATPU and OMMT on the composites were observed. The structures and morphology of the composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.
基金Project(2007168303) supported by Guangdong-Hong Kong Technology Cooperation Funding
文摘Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.
基金This work was supported by the "The National High Technology Research and Development Program" of Ministry of Science and Technology of China (No. 2002AA333020).
文摘The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylaterubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin to acrylate rubberand its incompatible blend can cause a remarkable improvement in the temperature dependence of the loss tangent. As a result, the present blends are very good damping materials.
文摘A novel ohthalazinone modified epoxy acrylate resin for the high temperature resistant ultravioet (UV) curable coating.was syn-thesized.The methacrylated epoxy resins obtained were utilized to UV radiation curing by taking 2.5% (wt%) of photoinitiator in combination with 20% (wt%) of diluent, and generated the interpenetraring polymer networks. The cured film had good thermal and chemical stability.
基金the Innovatory Group Program of the Natural Science Foundation of Hubei Province(No.2004ABC001)the National"863"Hi-tech Foundation of China(No.2002AA6Z3083)
文摘A novel UV-curable prepolymer polypropyleneglycol diglycidyl ether diacrylate (PPGGEA) was synthesized by utilizing polypropyleneglycol diglycidyl ether (PPGGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were in the following: the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ~C, and the molar ratio of PPGGE to AA was 1:2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-cured initiator was added to the synthesized PPGGEA to prepare a kind of UV-cured coating. The mechanical properties of the UV-cured films were determined, giving 29.99 MPa of tensile strength, 834.27 MPa of the Young's modulus and 5.66% of elongation at tear.
基金Funded by the National Natural Science Foundation of China (No.50803017)
文摘The PAL was synthesized with BA,MMA and some monomers containing carboxyl groups(for example,acrylic acid(AA) and methacrylic acid(MAA)) as co-monomers by semi-continuous seeded emulsion polymerization technique.The influences of alkalinization temperature,the feeding manner of AA or MAA on the particles size,rheological properties and carboxyl distribution of the latex were discussed,and the rheological mechanism was analyzed.The experimental results show that the PAL system has preferable viscosity and particle size when the alkalinization temperature is 50 ℃.Different distribution of carboxyl group in the particles and different resultant rheological properties are obtained by different feeding manner of AA or MAA into the system.The TEM images show that the particle is a smooth globe with carboxyl group concentrating on the surface and stabilized with electric double layer and nonionic adsorbed layer.The concentration of carboxyl functional group on the surface of particles can be achieved by the specific polymerization technique.The rheologyical properties are determined by accretion of particle volume and variation of the two phase volume ratio resulted from the carboxyl group spreading layer.
基金he Special Foundation for State Major Basic Research Program of China(2007CB707805,2004CCA05500)
文摘The production of acrylates from biomass-originated lactic acid is of extraordinary importance, to overcome the increasing worldwide shortage of petroleum. In this study, the catalytic dehydration of methyl lactate over a calcium sulfate catalyst, with various promoters, has been carried out to identify potential catalyst/promoter combinations for acrylate production. The best catalyst for methyl acrylate formation in this study has been calcium sulfate, with cupric sulfate and phosphates as promoters. The optimal mass ratio of m(CaSOa) : m(CuSOa) : m(Na2HPO4) : m(KH2PO4) is 150.0 : 13.8 : 2.5 : 1.2. Effects of carrier gas, reaction temperature, feed concentration as well as contact time on the dehydration of methyl lactate have been investigated. With nitrogen as a carrier gas, a combined yield of acrylic acid and methyl acrylate is 63.9% from 60% (by mass) methyl lactate at 400℃ with 7.7 seconds contact time.
基金This work was supported by the Scientific Research Foundation for Youth(No.QN0404).
文摘Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indicated thatthe polymerization could be completed in about 30 min and produce polymer with high molecular weight(10~6~10~7).It wasfound that monomer droplets are the main sites for the polymerization(nucleation).With the increase of DMPAconcentration,polymerization rate(R_p)reaches a maximum value while molecular weight of the produced polymer has anadverse result,but the dependence of R_p on incident light intensity is similar.Influences of other parameters such asmonomer concentration,emulsifier content and reaction temperature,etc.were also studied.At lower pH values of waterphase,R_p depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomer.Athigher pH,R_p shows a slight dependence on pH.
文摘Polyacrylonitrile-block-poly(methyl acrylate)(P(AN-b-MA)) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization employing macro-RAFT agent (PAN-RAFT) as the chain transfer agent and azobis(isobutyronitrile) (AIBN) as the initiator. A linear relationship between ln([M]0/[M]1) and reaction time was observed. The molecular structure of P(AN-b-MA) was characterized by ^1H-NMR, element analysis, FTIR and SEC. The molecular weight distribution (MWD) was less than 1.40, the Mn could be controled from 0.733 to 4.834×10^4, and the molar content of MA in P(AN-b-MA) were from 15.6 to 75.0 percentage, respectively.
基金Supported by the National Natural Science Foundation of China(No. 20074034).
文摘UV curable hyperbranched prepolymers based on amine-ester, ester-amide and ether-amide started with AB_2-type monomers have been prepared by the authors. A series of work on allyl ether maleate hyperbranched polyesters for UV curing coatings by Hult and his colleagues has been reported. However, the UV cured films from those materials are all flammable when attached to fire without addition of flame retardants.
基金Funded by the Natural Science Foundation of Jiangxi Province (No.2008GZC0021)the National "863" Hi-tech Foundation of China (No.2002AA6Z3083)
文摘A novel UV-curable prepolymer hexanediol diglycidyl ether diacrylate (HDGEA) was synthesized by utilizing hexanediol diglycidyl ether (HDGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimal synthetic conditions were that the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ℃, and the molar ratio of HDGE to AA was 1︰2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-curing initiator was added to the synthesized HDGEA to prepare a kind of UV-curing coating. The mechanical properties of the UV-cured films were determined, giving 31.87 MPa of tensile strength, 871.88 MPa of Young's modulus and 6.77% of elongation at tear.