Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects ...Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.展开更多
A new acrylic ester polymer YWB-7 resin was prepared and characterized. The properties of YWB-7 resin were compared with those of the commercial Amberlite XAD-7, Diaion HP2MG and hypercrosslinked macroporous polymer N...A new acrylic ester polymer YWB-7 resin was prepared and characterized. The properties of YWB-7 resin were compared with those of the commercial Amberlite XAD-7, Diaion HP2MG and hypercrosslinked macroporous polymer NDA-150 resins. Both surface area and micropore area of YWB-7 resin were bigger than those of XAD-7 resin and HP2MG resin. The YWB-7 resin was successfully employed to recycle 5-sodiosulfoisophthalic acids (SIPA) from its solutions with and without methanol.展开更多
A strong acidic ion exchange resin(NKC-9)was used as a new adsorbent material for the removal of Co(Ⅱ)from aqueous solutions.The adsorption isotherm follows the Langmuir model.The maximum adsorption capacity of the r...A strong acidic ion exchange resin(NKC-9)was used as a new adsorbent material for the removal of Co(Ⅱ)from aqueous solutions.The adsorption isotherm follows the Langmuir model.The maximum adsorption capacity of the resin for Co(Ⅱ)is evaluated to be 361.0 mg/g by the Langmuir model.It is found that 0.5 mol/L HCl solution provides effectiveness of the desorption of Co(Ⅱ)from the resin.The adsorption rate constants determined at 288,298 and 308 K are 7.12×10-5,8.51×10-5and 9.85×10-5s-1, respectively.The apparent activation energy(Ea)is 12.0 kJ/mol and the adsorption parameters of thermodynamic are-H Θ=16.1 kJ/mol,-SΘ=163.4 J/(mol·K),-G Θ 298 K=-32.6 kJ/mol,respectively.The adsorption of Co(Ⅱ)on the resin is found to be endothermic in nature.Column experiments show that it is possible to remove Co(Ⅱ)ions from aqueous medium dynamically by NKC-9 resin.展开更多
Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acryla...Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).展开更多
文摘Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.
文摘A new acrylic ester polymer YWB-7 resin was prepared and characterized. The properties of YWB-7 resin were compared with those of the commercial Amberlite XAD-7, Diaion HP2MG and hypercrosslinked macroporous polymer NDA-150 resins. Both surface area and micropore area of YWB-7 resin were bigger than those of XAD-7 resin and HP2MG resin. The YWB-7 resin was successfully employed to recycle 5-sodiosulfoisophthalic acids (SIPA) from its solutions with and without methanol.
基金Project(2008F70059) supported by Zhejiang Provincial Scientific and Technological Research Planning, ChinaProject(Z200907459) supported by the Key Grant of Education Department of Zhejiang Province, China
文摘A strong acidic ion exchange resin(NKC-9)was used as a new adsorbent material for the removal of Co(Ⅱ)from aqueous solutions.The adsorption isotherm follows the Langmuir model.The maximum adsorption capacity of the resin for Co(Ⅱ)is evaluated to be 361.0 mg/g by the Langmuir model.It is found that 0.5 mol/L HCl solution provides effectiveness of the desorption of Co(Ⅱ)from the resin.The adsorption rate constants determined at 288,298 and 308 K are 7.12×10-5,8.51×10-5and 9.85×10-5s-1, respectively.The apparent activation energy(Ea)is 12.0 kJ/mol and the adsorption parameters of thermodynamic are-H Θ=16.1 kJ/mol,-SΘ=163.4 J/(mol·K),-G Θ 298 K=-32.6 kJ/mol,respectively.The adsorption of Co(Ⅱ)on the resin is found to be endothermic in nature.Column experiments show that it is possible to remove Co(Ⅱ)ions from aqueous medium dynamically by NKC-9 resin.
文摘Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).