In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative densit...In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative density ranging from 0.38 to 0.97. The effects of the processing conditions on the density, morphology, and flexural properties of ABS and its nanocomposite foams are studied. It is found that nanoclay particles, as nucleating sites, play an important role in reducing the size of cells and increasing their number in the unit volume of foamed polymer, as well as increasing the flexural modulus of foam through reinforcing its matrix.展开更多
Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites. Thermal stability of the composite...Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites. Thermal stability of the composites was evaluated by using thermogravimetric analysis (TGA). The morphology of the fractured surface and the degree of dispersion of the clay in the ABS matrix were observed by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis results showed the variation of the crystal structure. Measurements of the tensile properties of the ABS/clay composites proved that the ABS/OPGS composited material represented the most excellent tensile property, because of good compatibility and dispersion of ABS with OPGS.展开更多
This paper reports the phase separation behavior of ABS films cast on the surfaces of homopelymers or random copolymers.It is found that phase separation of ABS films was induced by the surfaces of the substrate polym...This paper reports the phase separation behavior of ABS films cast on the surfaces of homopelymers or random copolymers.It is found that phase separation of ABS films was induced by the surfaces of the substrate polymers.The relationship between the miscibility of the sub- strate polymers and the phase separation behavior of ABS films was also examined.展开更多
文摘In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative density ranging from 0.38 to 0.97. The effects of the processing conditions on the density, morphology, and flexural properties of ABS and its nanocomposite foams are studied. It is found that nanoclay particles, as nucleating sites, play an important role in reducing the size of cells and increasing their number in the unit volume of foamed polymer, as well as increasing the flexural modulus of foam through reinforcing its matrix.
基金Funded by the National Natural Science Foundation of China (Nos.20674063 and 20774074)the Specialized Research Fund for the Doctoral Program of Higher Education (20050736001)
文摘Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites. Thermal stability of the composites was evaluated by using thermogravimetric analysis (TGA). The morphology of the fractured surface and the degree of dispersion of the clay in the ABS matrix were observed by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis results showed the variation of the crystal structure. Measurements of the tensile properties of the ABS/clay composites proved that the ABS/OPGS composited material represented the most excellent tensile property, because of good compatibility and dispersion of ABS with OPGS.
文摘This paper reports the phase separation behavior of ABS films cast on the surfaces of homopelymers or random copolymers.It is found that phase separation of ABS films was induced by the surfaces of the substrate polymers.The relationship between the miscibility of the sub- strate polymers and the phase separation behavior of ABS films was also examined.