Polymyxin B is widely used antibiotic in the clinic for resistant Gram-negative infections. In addition, polymyxin B-immobilized hemoperfusion cartridge has been used for endotoxin removal therapy in patients with sep...Polymyxin B is widely used antibiotic in the clinic for resistant Gram-negative infections. In addition, polymyxin B-immobilized hemoperfusion cartridge has been used for endotoxin removal therapy in patients with septic shock. The aim of this study was to investigate the anti-fibrotic and anti-cellular hypertrophic effects of polymyxin B, and further to explore its possible mechanism. Polymyxin B (3, 10 μM) significantly inhibited stress fiber formation induced by angiotensin II (Ang II) in rat heart-derived H9c2 cells. Furthermore, polymyxin B (1 - 10 μM) showed a potent inhibitory effect on Ang II-induced cellular hypertrophy in H9c2 cells. Under the mechanism study, the inhibitory activities of polymyxin B against kinases involved in cellular hypertrophy such as AKT1, CAMK, GRK5, GSK3β, MLCK, PKC, PKD2, AMPK, ROCK2, p70S6K, SGK1were evaluated. Polymyxin B possesses a potent G protein related kinase 5 (GKR5) inhibitory activity with IC50 value of 1.1 μM, and has an ATP non-competitive inhibitory mode. Taken together, these results indicate that polymyxin B alleviates Ang II-induced stress fiber formation and cellular hypertrophy, and propose that one mechanism underlying these effects involves inhibition of the GRK5 pathway.展开更多
Focal adhesions play an important role in cell spreading,migration,and overall mechanical integrity.The relationship of cell structural and mechanical properties was investigated in the context of focal adhesion proce...Focal adhesions play an important role in cell spreading,migration,and overall mechanical integrity.The relationship of cell structural and mechanical properties was investigated in the context of focal adhesion processes.Combined atomic force microscopy(AFM) and laser scanning confocal microscopy(LSCM) was utilized to measure single cell mechanics,in correlation with cellular morphology and membrane structures at a nanometer scale.Characteristic stages of focal adhesion were verified via confocal fluorescent studies,which confirmed three representative F-actin assemblies,actin dot,filaments network,and long and aligned fibrous bundles at cytoskeleton.Force-deformation profiles of living cells were measured at the single cell level,and displayed as a function of height deformation,relative height deformation and relative volume deformation.As focal adhesion progresses,single cell compression profiles indicate that both membrane and cytoskeleton stiffen,while spreading increases especially from focal complex to focal adhesion.Correspondingly,AFM imaging reveals morphological geometries of spherical cap,spreading with polygon boundaries,and elongated or polarized spreading.Membrane features are dominated by protrusions of 41-207 nm tall,short rods with 1-6 μm in length and 10.2-80.0 nm in height,and long fibrous features of 31-246 nm tall,respectively.The protrusion is attributed to local membrane folding,and the rod and fibrous features are consistent with bilayer decorating over the F-actin assemblies.Taken collectively,the reassembly of F-actin during focal adhesion formation is most likely responsible for the changes in cellular mechanics,spreading morphology,and membrane structural features.展开更多
文摘Polymyxin B is widely used antibiotic in the clinic for resistant Gram-negative infections. In addition, polymyxin B-immobilized hemoperfusion cartridge has been used for endotoxin removal therapy in patients with septic shock. The aim of this study was to investigate the anti-fibrotic and anti-cellular hypertrophic effects of polymyxin B, and further to explore its possible mechanism. Polymyxin B (3, 10 μM) significantly inhibited stress fiber formation induced by angiotensin II (Ang II) in rat heart-derived H9c2 cells. Furthermore, polymyxin B (1 - 10 μM) showed a potent inhibitory effect on Ang II-induced cellular hypertrophy in H9c2 cells. Under the mechanism study, the inhibitory activities of polymyxin B against kinases involved in cellular hypertrophy such as AKT1, CAMK, GRK5, GSK3β, MLCK, PKC, PKD2, AMPK, ROCK2, p70S6K, SGK1were evaluated. Polymyxin B possesses a potent G protein related kinase 5 (GKR5) inhibitory activity with IC50 value of 1.1 μM, and has an ATP non-competitive inhibitory mode. Taken together, these results indicate that polymyxin B alleviates Ang II-induced stress fiber formation and cellular hypertrophy, and propose that one mechanism underlying these effects involves inhibition of the GRK5 pathway.
基金initiated by a UCD Alzheimer's Disease Center (ADC) pilotgranta CRCC (Cancer Research Coordination Committee) Research Grantthe support of W. M. Keck Foundation
文摘Focal adhesions play an important role in cell spreading,migration,and overall mechanical integrity.The relationship of cell structural and mechanical properties was investigated in the context of focal adhesion processes.Combined atomic force microscopy(AFM) and laser scanning confocal microscopy(LSCM) was utilized to measure single cell mechanics,in correlation with cellular morphology and membrane structures at a nanometer scale.Characteristic stages of focal adhesion were verified via confocal fluorescent studies,which confirmed three representative F-actin assemblies,actin dot,filaments network,and long and aligned fibrous bundles at cytoskeleton.Force-deformation profiles of living cells were measured at the single cell level,and displayed as a function of height deformation,relative height deformation and relative volume deformation.As focal adhesion progresses,single cell compression profiles indicate that both membrane and cytoskeleton stiffen,while spreading increases especially from focal complex to focal adhesion.Correspondingly,AFM imaging reveals morphological geometries of spherical cap,spreading with polygon boundaries,and elongated or polarized spreading.Membrane features are dominated by protrusions of 41-207 nm tall,short rods with 1-6 μm in length and 10.2-80.0 nm in height,and long fibrous features of 31-246 nm tall,respectively.The protrusion is attributed to local membrane folding,and the rod and fibrous features are consistent with bilayer decorating over the F-actin assemblies.Taken collectively,the reassembly of F-actin during focal adhesion formation is most likely responsible for the changes in cellular mechanics,spreading morphology,and membrane structural features.