期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Experimental Study on the Wave-Induced Pore Water Pressure Change and Relative Influencing Factors in the Silty Seabed
1
作者 LI Anlong LUO Xiaoqiao +2 位作者 LIN Lin YE Qing LI Chunyu 《Journal of Ocean University of China》 SCIE CAS 2014年第6期911-916,共6页
In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heigh... In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heights respectively. The study showed that water waves propagating over silty seabed can induce significant change of pore water pressure, and the amplitude of pore pressure depends on depth of buried soil layer, clay content and wave height, which are considered as the three influencing factors for pore water pressure change. The pressure will attenuate according to exponential law with increase of soil layer buried depth, and the attenuation being more rapid in those soil layers with higher clay content and greater wave height. The pore pressure in silty seabed increases rapidly in the initial stage of wave action, then decreases gradually to a stable value, depending on the depth of buried soil layer, clay content and wave height. The peak value of pore pressure will increase if clay content or depth of buried soil layer decreases, or wave height increases. The analysis indicated that these soils with 5% clay content and waves with higher wave height produce instability in bed easier, and that the wave energy is mostly dissipated near the surface of soils and 5% clay content in soils can prevent pore pressure from dissipating immediately. 展开更多
关键词 wave action silty seabed pore water pressure development influencing factor
下载PDF
Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress 被引量:6
2
作者 Yongshui Kang Quansheng Liu +1 位作者 Xiaoyan Liu Shibing Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期466-476,共11页
Water-bearing rocks exposed to freezing temperature can be subjected to freezeethaw cycles leading tocrack initiation and propagation, which are the main causes of frost damage to rocks. Based on theGriffith theory of... Water-bearing rocks exposed to freezing temperature can be subjected to freezeethaw cycles leading tocrack initiation and propagation, which are the main causes of frost damage to rocks. Based on theGriffith theory of brittle fracture mechanics, the crack initiation criterion, propagation direction, andcrack length under freezing pressure and far-field stress are analyzed. Furthermore, a calculation methodis proposed for the stress intensity factor (SIF) of the crack tip under non-uniformly distributed freezingpressure. The formulae for the crack/fracture propagation direction and length of the wing crack underfreezing pressure are obtained, and the mechanism for coalescence of adjacent cracks is investigated.In addition, the necessary conditions for different coalescence modes of cracks are studied. Using thetopology theory, a new algorithm for frost crack propagation is proposed, which has the capability todefine the crack growth path and identify and update the cracked elements. A model that incorporatesmultiple cracks is built by ANSYS and then imported into FLAC3D. The SIFs are then calculated using aFISH procedure, and the growth path of the freezing cracks after several calculation steps is demonstratedusing the new algorithm. The proposed method can be applied to rocks containing fillings such asdetritus and slurry. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Freeze-thaw action Freezing pressure Stress intensity factor(SIF) Crack propagation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部