期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Birkhoff Normal Form for the Derivative Nonlinear Schrodinger Equation
1
作者 Jian Jun LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第1期249-262,共14页
This paper is concerned with the derivative nonlinear Schr?dinger equation with periodic boundary conditions.We obtain complete Birkhoff normal form of order six.As an application,the long time stability for solutions... This paper is concerned with the derivative nonlinear Schr?dinger equation with periodic boundary conditions.We obtain complete Birkhoff normal form of order six.As an application,the long time stability for solutions of small amplitude is proved. 展开更多
关键词 birkhoff normal form derivative nonlinear Schr?dinger equation long time stability
原文传递
关于带导数非线性薛定谔方程组的拟周期解(英文)
2
作者 刘凌霞 吴健 《南京大学学报(数学半年刊)》 CAS 2014年第2期99-124,共26页
本文中,我们考虑周期边界条件下的一维非线性薛定谔方程组{iut-uxx-i(Mξu+|v|^2u)x=0,ivt-vxx-i(Mηv+|u|^2v)x=0}证明了该方程组在一族小振幅,实解析,2个频率的拟周期解。
关键词 拟线性哈密顿偏微分方程 KAM定理 拟周期解 Borkhoff正规型
下载PDF
保守双摆的不可积性和混沌 被引量:4
3
作者 凌复华 徐如进 《应用数学和力学》 CSCD 北大核心 1992年第1期45-52,共8页
本文用Birkhoff级数正则变换方法求出保守双摆运动方程的近似积分,并把近似积分的等值曲线与数值仿真结果作了比较.由此清楚地看出.当能级提高时,系统由近可积的成为不可积的,即其运动情况由规则的转变为混沌的.本文还介绍了演示上述性... 本文用Birkhoff级数正则变换方法求出保守双摆运动方程的近似积分,并把近似积分的等值曲线与数值仿真结果作了比较.由此清楚地看出.当能级提高时,系统由近可积的成为不可积的,即其运动情况由规则的转变为混沌的.本文还介绍了演示上述性态的一个保守双摆模型. 展开更多
关键词 保守双摆 不可积性 混沌 正则变换
下载PDF
色散Camassa-Holm方程的可积性及Birkhoff规范型
4
作者 吴孝平 种鸽子 姜自文 《山东大学学报(理学版)》 CAS CSCD 北大核心 2023年第11期76-85,共10页
基于已知的单位圆周上的非色散Camassa-Holm方程的无穷多守恒律,构造出相应色散方程且新的二次项具有统一形式的无穷多守恒律。作为其重要应用,证明了色散Camassa-Holm方程任意阶的Birkhoff规范型是保作用量的。
关键词 CAMASSA-HOLM方程 守恒量 保作用量的birkhoff规范型
原文传递
凸弹子球系统的Birkhoff迭代与谱不变性
5
作者 张建路 《中国科学:数学》 CSCD 北大核心 2022年第6期649-662,共14页
对于具有光滑边界的凸弹子球映射,本文构造一系列恰当的典则变换使其在近边界区域内转化为一个任意阶可积的表达式.这一可积表达式可以用来揭示凸弹子球系统的谱不变量.
关键词 凸弹子球 生成函数 birkhoff典则变换 谱不变量 辛扭转映射 Mather理论
原文传递
Quasi-periodic solutions with prescribed frequency in a nonlinear Schrdinger equation 被引量:1
6
作者 REN Xiu-Fang Department of Mathematics, Nanjing University, Nanjing 210093, China 《Science China Mathematics》 SCIE 2010年第12期3067-3084,共18页
In this paper, one-dimensional (1D) nonlinear Schrdinger equation iut-uxx + Mσ u + f ( | u | 2 )u = 0, t, x ∈ R , subject to periodic boundary conditions is considered, where the nonlinearity f is a real analytic fu... In this paper, one-dimensional (1D) nonlinear Schrdinger equation iut-uxx + Mσ u + f ( | u | 2 )u = 0, t, x ∈ R , subject to periodic boundary conditions is considered, where the nonlinearity f is a real analytic function near u = 0 with f (0) = 0, f (0) = 0, and the Floquet multiplier Mσ is defined as Mσe inx = σne inx , with σn = σ, when n 0, otherwise, σn = 0. It is proved that for each given 0 【 σ 【 1, and each given integer b 】 1, the above equation admits a Whitney smooth family of small-amplitude quasi-periodic solutions with b-dimensional Diophantine frequencies, corresponding to b-dimensional invariant tori of an associated infinite-dimensional Hamiltonian system. Moreover, these b-dimensional Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proof is based on a partial Birkhoff normal form reduction and an improved KAM method. 展开更多
关键词 Schrdinger equation HAMILTONIAN system birkhoff normal form QUASI-PERIODIC solution
原文传递
KAM tori for higher dimensional beam equation with a fixed constant potential 被引量:1
7
作者 XU XinDong GENG JianSheng 《Science China Mathematics》 SCIE 2009年第9期2007-2018,共12页
In this paper, we consider the higher dimensional nonlinear beam equation:utt+△2u+σu + f(u)=0 with periodic boundary conditions, where the nonlinearity f(u) is a real-analytic function of the form f(u)=u3+ h.o.t nea... In this paper, we consider the higher dimensional nonlinear beam equation:utt+△2u+σu + f(u)=0 with periodic boundary conditions, where the nonlinearity f(u) is a real-analytic function of the form f(u)=u3+ h.o.t near u=0 and σ is a positive constant. It is proved that for any fixed σ>0, the above equation admits a family of small-amplitude, linearly stable quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional dynamical system. 展开更多
关键词 beam equation KAM tori birkhoff normal form 37K60 37K55
原文传递
Diffusion bound and reducibility for discrete Schrodinger equations with tangent potential
8
作者 Shiwen ZHANG Zhiyan ZHAO 《Frontiers of Mathematics in China》 SCIE CSCD 2012年第6期1213-1235,共23页
In this paper, we consider the lattice SchrSdinger equations iqn(t) = tan π(na+x)qn(t) +ε(qn+1(t) + qn-1(t)) +δVn(t)|qn(t)|2τ-2qn(t),with a satisfying a certain Diophantine condition, x∈ ... In this paper, we consider the lattice SchrSdinger equations iqn(t) = tan π(na+x)qn(t) +ε(qn+1(t) + qn-1(t)) +δVn(t)|qn(t)|2τ-2qn(t),with a satisfying a certain Diophantine condition, x∈ R/Z, and t- = 1 or 2, where vn(t) is a spatial localized real bounded potential satisfying |vn(t)| Ce-plnl. We prove that the growth of H1 norm of the solution {qn(t)}n∈Z is at most logarithmic if the initial data {qn(0)}n∈Z ∈ H1 for e sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e., 展开更多
关键词 Tangent potential REDUCIBILITY Sobolev norm birkhoff normal form
原文传递
Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential
9
作者 Xindong XU 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第1期227-254,共28页
We consider Hamiltonian partial differential equations utt + |δx|u + σu = f(u), x ∈T, t ∈R, with periodic boundary conditions, where f(u) is a real-analytic function of the form f(u) = u5 + σ(u5) nea... We consider Hamiltonian partial differential equations utt + |δx|u + σu = f(u), x ∈T, t ∈R, with periodic boundary conditions, where f(u) is a real-analytic function of the form f(u) = u5 + σ(u5) near u = 0, σ ∈(0, 1) is a fixed constant, and T = R/2πZ. A family of quasi-periodic solutions with 2-dimensional are constructed for the equation above with σ ∈ (0, 1)Q. The proof is based on infinite-dimensional KAM theory and partial Birkhoff normal form. 展开更多
关键词 Dense frequency quasi-periodic solution birkhoff normal form
原文传递
KAM Tori for the Derivative Quintic Nonlinear Schrodinger Equation
10
作者 Dong Feng YAN Guang Hua SHI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第2期153-170,共18页
This paper is concerned with one-dimensional derivative quintic nonlinear Schrodinger equation,iut—uxx+i(|u|4u)x=0,x eT.The existence of a large amount of quasi-periodic solutions with two frequencies for this equati... This paper is concerned with one-dimensional derivative quintic nonlinear Schrodinger equation,iut—uxx+i(|u|4u)x=0,x eT.The existence of a large amount of quasi-periodic solutions with two frequencies for this equation is established.The proof is based on partial Birkhoff normal form technique and an unbounded KAM theorem.We mention that in the present paper the mean value of u does not need to be zero,but small enough,which is different from the assumption(1.7)in Geng-Wu[J.Math.Phys.、53,102702(2012)]. 展开更多
关键词 Derivative nonlinear Schrodinger equation KAM theorem quasi-periodic solutions birkhoff normal form
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部