Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrat...Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.展开更多
To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective...To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.展开更多
In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations...In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.展开更多
Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on ...Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on the directed generation of ROSs.Herein,we report the first identification of tunable molecular oxygen activation induced by polymeric conjugation in nonmetallic conjugated microporous polymers(CMP).The conjugation between these can be achieved by the introduction of alkynyl groups.CMP-A with an alkynyl bridge facilitates the intramolecular charge mobility while CMP-D,lacking an alkynyl group enhances the photoexcited carrier build-up on the surface from diffusion.These different processes dominate the directed ROS generation of the superoxide radical(·O_(2)^(-))and singlet oxygen(^(1)O_(2)),respectively.This theory is substantiated by the different performances of these CMPs in the aerobic oxidation of sulfides and the dehydrogenative coupling of amines,and could provide insight into the rational design of CMPs for various heterogeneous organic photosynthesis.展开更多
Sunlight-driven activation of molecular oxygen(O_(2))for organic oxidation reactions offers an appealing strategy to cut down the reliance on fossil fuels in chemical industry,yet it remains a great challenge to simul...Sunlight-driven activation of molecular oxygen(O_(2))for organic oxidation reactions offers an appealing strategy to cut down the reliance on fossil fuels in chemical industry,yet it remains a great challenge to simultaneously tailor the charge kinetics and promote reactant chemisorption on semiconductor catalysts for enhanced photocatalytic performance.Herein,we report iron sites immobilized on defective BiOBr nanosheets as an efficient and selective photocatalyst for activation of O_(2) to singlet oxygen(^(1)O_(2)).These Fe^(3+) species anchored by oxygen vacancies can not only facilitate the separation and migration of photogenerated charge carrier,but also serve as active sites for effective adsorption of 02.Moreover,low-temperature phosphorescence spectra combined with X-ray photoelectron spectroscopy(XPS)and electronic paramagnetic resonance(EPR)spectra under illumination reveal that the Fe species can boost the quantum yield of excited triplet state and accelerate the energy transfer from excited triplet state to adsorbed O2 via a chemical loop of Fe^(3+)/Fe^(2+),thereby achieving highly efficient and selective generation of ^(1)O_(2).As a result,the versatile iron sites on defective BiOBr nanosheets contributes to near-unity conversion rate and selectivity in both aerobic oxidative coupling of amines to imines and sulfoxidation of organic sulfides.This work highlights the significant role of metal sites anchored on semiconductors in regulating the charge/energy transfer during the heterogeneous photocatalytic process,and provides a new angle for designing high-performance photocatalysts.展开更多
Largely limited by the high dissociation energy of the O—O bond,the photocatalytic molecular oxygen activation is highly challenged,which re strains the application of photocatalytic oxidation technology for atmosphe...Largely limited by the high dissociation energy of the O—O bond,the photocatalytic molecular oxygen activation is highly challenged,which re strains the application of photocatalytic oxidation technology for atmospheric pollutants removal.Herein,we design and fabricate the InP QDs/g-C_(3)N_(4) compounds.The introduction of InP QDs promotes the charge transfer within the interface resulting in the effective separation of photo-generated carriers.Furthermore,InP QDs greatly facilitates the activation of molecular oxygen and promote the formation of O_(2)·under visible-light illuminatio n.These conclusions are identified by experimental and calculation results.Hence,NO can be combined with the O_(2)·to form O—O—N—O intermediate to direct conversion into NO_(3).As a result,the NO removal ratio of g-C_(3)N_(4) has a one fold increase after InP QDs loaded and the generation of NO_(2) is effectively inhibited.This wo rk may provide a strategy to design highly efficient materials for molecular oxygen activation.展开更多
The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride ...The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride (Fe(TPPF20)Cl) were carried out by using the Density Functional Theory (DFT) UB3LYP with STO-3G^* and 6-31G^* basis sets, respectively. The electronic properties and the structures of high-lying molecular orbitals were analyzed in detail. The results show that partial spin is transferred from the Fe atom to the porphyrin ring and some electron with the spin opposite to the unpaired electron on the Fe atom is transferred from the porphyrin ring to the Fe atom. The π and σ-type bonding between the Fe atom and the porphyin ring cause the transfer. The fluorination enhances the electron transfer and the chemical stability of the complex. The high stability is important for the complex possessing high catalytic activity. The catalysis mechanism of oxygen molecule activation on the complex surface is also discussed based on the symmetry of the molecular orbitals.展开更多
Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds(VOCs).However,to fully understand the activation of molecular oxygen and the role of...Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds(VOCs).However,to fully understand the activation of molecular oxygen and the role of active oxygen species generated in this reaction is still a challenging target.Herein,MgO nanosheets and single-atom Pt loaded MgO(Pt SA/MgO)nanosheets were synthesized and used as catalysts in toluene oxidation.The activation process of molecular oxygen and oxidation performance on the two catalysts were contrastively investigated.The Pt SA/MgO exhibited significantly enhanced catalytic activity compared to MgO.The oxygen vacancies can be easily generated on the Pt SA/MgO surface,which facilitate the activation of molecular oxygen and the formation of active oxygen species.Based on the experimental data and theoretical calculations,an active oxygen species promoted oxidation mechanism for toluene was proposed.In the presence of H2O,the molecular oxygen is more favorable to be dissociated to generate•OH on the oxygen vacancies of the Pt SA/MgO surface,which is the dominant active oxygen species.We anticipate that this work may shed light on further investigation of t10.1007/s12274-020-2765-1he oxidation mechanism of toluene and other VOCs over noble metal catalysts.展开更多
Photocatalytic recovery,a novel precious metal recycling technology,dedicates to solving the environmental and energy consumption problems caused by traditional technologies.The activation of molecular oxygen (O_(2)) ...Photocatalytic recovery,a novel precious metal recycling technology,dedicates to solving the environmental and energy consumption problems caused by traditional technologies.The activation of molecular oxygen (O_(2)) is one of the most critical steps in the whole process.Herein,we regulated the different adsorption intensity of oxygen on the surface by designing phosphate (PO_(4)^(3-)) modified titanium oxide(TiO_(2)).The results show that the adsorption of oxygen on the photocatalyst surface is gradually enhanced,which effectively improves the dissolution rate of precious metals.PO_(4)^(3-)modification increased the photocatalytic dissolution rate of gold (Au) by 2.8 times.The photocatalytic activity of other precious metals dissolution (such as palladium (Pd),platinum (Pt),rhodium (Rh),ruthenium (Ru) and iridium (Ir)) was also significantly improved.It is applied to the recovery of precious metals from spent catalysts and electronic devices to significantly promote the recovery efficiency.This indicates the direction for designing more efficient photocatalysts for precious metal recovery.展开更多
Strong acceptor-weak acceptor system FN-TPy has been designed and synthesized,which undergoes solvent dependent self-assembly in mixed aqueous media to generate through space intermolecular charge transfer assemblies....Strong acceptor-weak acceptor system FN-TPy has been designed and synthesized,which undergoes solvent dependent self-assembly in mixed aqueous media to generate through space intermolecular charge transfer assemblies.The as-prepared entropically favoured assemblies of FN-TPy exhibit excellent photostability and photosensitizing properties in the assembled state to activate aerial oxygen for efficient generation of reactive oxygen species through Type-I and Type-II pathways.The FN-TPy exhibits excellent potential for regulated oxidation of alcohols and aldehydes under mild reaction conditions(visible light irradiation,aqueous media,room temperature)using aerial oxygen as the‘oxidant’.The present study demonstrates the potential of FN-TPy assemblies to catalyse controlled oxidation of benzyl alcohol to benzoic acid.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities (No.30922010302)the Start-Up Grant from Nanjing University of Science and Technology (AE89991/397)。
文摘Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.
文摘To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.
文摘In this work,the tunable introduction of oxygen vacancies in bismuth tungstate was realized via asimple solvothermal method with the assistance of iodine doping.With the predictions afforded bytheoretical calculations,the as-prepared bismuth tungstate was characterized using various tech-niques,such as X-ray diffraction,Raman spectroscopy,scanning electron microscopy,transmissionelectron microscopy,X-ray photoelectron spectroscopy,electron spin resonance spectroscopy,anduV-Vis diffuse reflectance spectroscopy.The different concentrations of the oxygen vacancies onbismuth tungstate were found to be intensely correlated with iodine doping,which weakened thelattice oxygen bonds.Owing to the sufficient oxygen vacancies introduced in bismuth tungstate as aresult of iodine doping,the molecular oxygen activation was remarkably enhanced,thus endowingbismuth tungstate with high activity for the photocatalytic degradation of sodium pentachloro-phenate.More encouraging is the total organic carbon removal rate of sodium pentachlorophenateover iodine-doped bismuth tungstate that exceeded 90%in only 2 h and was 10.6 times higher thanthat of the pristine bismuth tungstate under visible light irradiation.Moreover,the mechanism,through which the degradation of sodium pentachlorophenate over iodine-doped bismuth tung-state is enhanced,was speculated based on the results of radical detection and capture experiments.This work provides a new perspective for the enhanced photocatalytic degradation of organochlo-rine pesticides from the oxygen vacancy-induced molecular oxygen activation over iodine-dopedbismuth tungstate.
基金supported by the National Natural Science Foundation of China(51902121,52073110,22071072,51872107,21975090,and 21801086)the Fundamental Research Funds for the Central Universities of China(2662018QD011,2662018PY052,and 2662019PY023)the Natural Science Foundation of Hubei Province(2019CFB322)。
文摘Photocatalytic oxidative organic reactions are important synthetic transformations,and research on reaction selectivity by reactive oxygen species(ROS)is significant.To date,however,there has rarely been any focus on the directed generation of ROSs.Herein,we report the first identification of tunable molecular oxygen activation induced by polymeric conjugation in nonmetallic conjugated microporous polymers(CMP).The conjugation between these can be achieved by the introduction of alkynyl groups.CMP-A with an alkynyl bridge facilitates the intramolecular charge mobility while CMP-D,lacking an alkynyl group enhances the photoexcited carrier build-up on the surface from diffusion.These different processes dominate the directed ROS generation of the superoxide radical(·O_(2)^(-))and singlet oxygen(^(1)O_(2)),respectively.This theory is substantiated by the different performances of these CMPs in the aerobic oxidation of sulfides and the dehydrogenative coupling of amines,and could provide insight into the rational design of CMPs for various heterogeneous organic photosynthesis.
基金supported by the National Key R&D Program of China(No.2017YFA0700104)the National Natural Science Foundation of China(Nos.21905204,21931007,and 21790052)111 Project of China(No.D17003).
文摘Sunlight-driven activation of molecular oxygen(O_(2))for organic oxidation reactions offers an appealing strategy to cut down the reliance on fossil fuels in chemical industry,yet it remains a great challenge to simultaneously tailor the charge kinetics and promote reactant chemisorption on semiconductor catalysts for enhanced photocatalytic performance.Herein,we report iron sites immobilized on defective BiOBr nanosheets as an efficient and selective photocatalyst for activation of O_(2) to singlet oxygen(^(1)O_(2)).These Fe^(3+) species anchored by oxygen vacancies can not only facilitate the separation and migration of photogenerated charge carrier,but also serve as active sites for effective adsorption of 02.Moreover,low-temperature phosphorescence spectra combined with X-ray photoelectron spectroscopy(XPS)and electronic paramagnetic resonance(EPR)spectra under illumination reveal that the Fe species can boost the quantum yield of excited triplet state and accelerate the energy transfer from excited triplet state to adsorbed O2 via a chemical loop of Fe^(3+)/Fe^(2+),thereby achieving highly efficient and selective generation of ^(1)O_(2).As a result,the versatile iron sites on defective BiOBr nanosheets contributes to near-unity conversion rate and selectivity in both aerobic oxidative coupling of amines to imines and sulfoxidation of organic sulfides.This work highlights the significant role of metal sites anchored on semiconductors in regulating the charge/energy transfer during the heterogeneous photocatalytic process,and provides a new angle for designing high-performance photocatalysts.
基金the National Natural Science Foundation of China(No.U1862111)Sichuan Science andTechnology Program(No.2020ZDZX0008)+3 种基金Sichuan Provincial International Cooperation Project(No.2019YFH0164)International Collaboration Project of Chengdu City(No.2017-GH02-00014HZ)Graduate Scientific Research Innovation Foundation of SWPU(No.2019cxyb013)Cheung Kong Scholars Programme of China。
文摘Largely limited by the high dissociation energy of the O—O bond,the photocatalytic molecular oxygen activation is highly challenged,which re strains the application of photocatalytic oxidation technology for atmospheric pollutants removal.Herein,we design and fabricate the InP QDs/g-C_(3)N_(4) compounds.The introduction of InP QDs promotes the charge transfer within the interface resulting in the effective separation of photo-generated carriers.Furthermore,InP QDs greatly facilitates the activation of molecular oxygen and promote the formation of O_(2)·under visible-light illuminatio n.These conclusions are identified by experimental and calculation results.Hence,NO can be combined with the O_(2)·to form O—O—N—O intermediate to direct conversion into NO_(3).As a result,the NO removal ratio of g-C_(3)N_(4) has a one fold increase after InP QDs loaded and the generation of NO_(2) is effectively inhibited.This wo rk may provide a strategy to design highly efficient materials for molecular oxygen activation.
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20443002) and the Science Foundations of Henan Province for 0utstanding Young Scientists (No.0612002600)
文摘The geometry optimizations and the single point energy calculations of iron tetraphenylporphyrin chloride Fe(TPP)Cl and iron tetraphenylporphyrin chloride (Fe(TPP)Cl), iron pentafluorophenylporphyrin chloride (Fe(TPPF20)Cl) were carried out by using the Density Functional Theory (DFT) UB3LYP with STO-3G^* and 6-31G^* basis sets, respectively. The electronic properties and the structures of high-lying molecular orbitals were analyzed in detail. The results show that partial spin is transferred from the Fe atom to the porphyrin ring and some electron with the spin opposite to the unpaired electron on the Fe atom is transferred from the porphyrin ring to the Fe atom. The π and σ-type bonding between the Fe atom and the porphyin ring cause the transfer. The fluorination enhances the electron transfer and the chemical stability of the complex. The high stability is important for the complex possessing high catalytic activity. The catalysis mechanism of oxygen molecule activation on the complex surface is also discussed based on the symmetry of the molecular orbitals.
基金This work was financially supported by National Natural Science Foundation of China (Nos. 51808037, 21601136 and 21876010)the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2018KJ126)the Fundamental Research Funds for the Central Universities (No. FRF-TP-16-060A1).
文摘Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds(VOCs).However,to fully understand the activation of molecular oxygen and the role of active oxygen species generated in this reaction is still a challenging target.Herein,MgO nanosheets and single-atom Pt loaded MgO(Pt SA/MgO)nanosheets were synthesized and used as catalysts in toluene oxidation.The activation process of molecular oxygen and oxidation performance on the two catalysts were contrastively investigated.The Pt SA/MgO exhibited significantly enhanced catalytic activity compared to MgO.The oxygen vacancies can be easily generated on the Pt SA/MgO surface,which facilitate the activation of molecular oxygen and the formation of active oxygen species.Based on the experimental data and theoretical calculations,an active oxygen species promoted oxidation mechanism for toluene was proposed.In the presence of H2O,the molecular oxygen is more favorable to be dissociated to generate•OH on the oxygen vacancies of the Pt SA/MgO surface,which is the dominant active oxygen species.We anticipate that this work may shed light on further investigation of t10.1007/s12274-020-2765-1he oxidation mechanism of toluene and other VOCs over noble metal catalysts.
基金supported by the National Key Research and Development Program of China (No. 2020YFA0211004)the National Natural Science Foundation of China (Nos. 22176128, 21876114)+4 种基金Sponsored by Program of Shanghai Government (Nos. 21XD1422800, 19DZ1205102, 19160712900)Chinese Education Ministry Key Laboratory and International Joint Laboratory on Resource Chemistry, and Shanghai Eastern Scholar Program“111 Innovation and Talent Recruitment Base on Photochemical and Energy Materials” (No. D18020)Shanghai Engineering Research Center of Green Energy Chemical Engineering (No. 18DZ2254200)Shanghai Frontiers Science Center of Biomimetic Catalysis。
文摘Photocatalytic recovery,a novel precious metal recycling technology,dedicates to solving the environmental and energy consumption problems caused by traditional technologies.The activation of molecular oxygen (O_(2)) is one of the most critical steps in the whole process.Herein,we regulated the different adsorption intensity of oxygen on the surface by designing phosphate (PO_(4)^(3-)) modified titanium oxide(TiO_(2)).The results show that the adsorption of oxygen on the photocatalyst surface is gradually enhanced,which effectively improves the dissolution rate of precious metals.PO_(4)^(3-)modification increased the photocatalytic dissolution rate of gold (Au) by 2.8 times.The photocatalytic activity of other precious metals dissolution (such as palladium (Pd),platinum (Pt),rhodium (Rh),ruthenium (Ru) and iridium (Ir)) was also significantly improved.It is applied to the recovery of precious metals from spent catalysts and electronic devices to significantly promote the recovery efficiency.This indicates the direction for designing more efficient photocatalysts for precious metal recovery.
基金SERB,New Delhi,Grant/Award Number:CRG/2018/001274SERB Power fellowship,Grant/Award Number:SPF/2021/000019CSIR,New Delhi,Grant/Award Number:02(0358/19/EMR-II)。
文摘Strong acceptor-weak acceptor system FN-TPy has been designed and synthesized,which undergoes solvent dependent self-assembly in mixed aqueous media to generate through space intermolecular charge transfer assemblies.The as-prepared entropically favoured assemblies of FN-TPy exhibit excellent photostability and photosensitizing properties in the assembled state to activate aerial oxygen for efficient generation of reactive oxygen species through Type-I and Type-II pathways.The FN-TPy exhibits excellent potential for regulated oxidation of alcohols and aldehydes under mild reaction conditions(visible light irradiation,aqueous media,room temperature)using aerial oxygen as the‘oxidant’.The present study demonstrates the potential of FN-TPy assemblies to catalyse controlled oxidation of benzyl alcohol to benzoic acid.