Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ...Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.展开更多
Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions. Wile implantation energy of the ions is 19 keV, and the implantati...Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions. Wile implantation energy of the ions is 19 keV, and the implantation dose is between 1015 ions/cm2 and 1016 ions/cm2. The doped c-BN thin films are then annealed at a temperature between 400℃ and 800℃. The results show that the surface resistivity of doped and annealed c-BN thin films is lowered by two to three orders, and the activation energy of c-BN thin films is 0.18 eV.展开更多
Hexagonal boron nitride(h-BN)is a highly selective catalyst for oxidative dehydrogenation of light alkanes to produce the corresponding alkenes.Despite intense recent research effort,many aspects of the reaction mecha...Hexagonal boron nitride(h-BN)is a highly selective catalyst for oxidative dehydrogenation of light alkanes to produce the corresponding alkenes.Despite intense recent research effort,many aspects of the reaction mechanism,such as the observed supra-linear reaction order of alkanes,remain unresolved.In this work,we show that the introduction of a low concentration of propane in the feed of ethane oxidative dehydrogenation is able to enhance the C_(2)H_(6) conversion by 47%,indicating a shared reaction intermediate in the activation of ethane and propane.The higher activity of propane makes it the dominant radical generator in the oxidative co-dehydrogenation of ethane and propane(ODEP).This unique feature of the ODEP renders propane an effective probe molecule to deconvolute the two roles of alkanes in the dehydrogenation chemistry,i.e.,radical generator and substrate.Kinetic studies indicate that both the radical generation and the dehydrogenation pathways exhibit a first order kinetics toward the alkane partial pressure,leading to the observed second order kinetics of the overall oxidative dehydrogenation rate.With the steady-state approximation,a radical chain reaction mechanism capable of rationalizing observed reaction behaviors is proposed based on these insights.This work demonstrates the potential of ODEP as a strategy of both activating light alkanes in oxidative dehydrogenation on BN and mechanistic investigations.展开更多
In the present investigation,the growth kinetics of interfacial reaction layer products between cubic boron nitride(CBN) and Cu-Sn-Ti filler metal has been thoroughly investigated.Detailed morphological and compositio...In the present investigation,the growth kinetics of interfacial reaction layer products between cubic boron nitride(CBN) and Cu-Sn-Ti filler metal has been thoroughly investigated.Detailed morphological and compositional features of respective compounds have been demonstrated for a wide brazing temperature ranging from 1153 K to 1223 K.It is found that within 30 minutes brazing holding time,the reaction layer growth is largely determined by the population of Ti N via effective Ti diffusion with an activation energy of 223.51 k J/mol,leading to parabolic growth patterns.It is further revealed that TiN grows both in axial and length dimensions,which eventually extends to the forefront and covers the reaction layer.展开更多
Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrat...Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.展开更多
Methane(CH_(4))controllable activation is the key process for CH_(4)upgrading,which is sensitive to the surface oxygen species.The high thermal conductivity and superb thermal stability of the hexagonal boron nitride(...Methane(CH_(4))controllable activation is the key process for CH_(4)upgrading,which is sensitive to the surface oxygen species.The high thermal conductivity and superb thermal stability of the hexagonal boron nitride(h-BN)sheet makes a single transition metal atom doped hexagonal boron nitride monolayer(TM-BN)possible to be a promising material for catalyzing methane partial oxidation.The performances of 24 TM-BNs for CH_(4)activation are systematically investigated during the CH_(4)oxidation by means of first-principles computation.The calculation results unravel the periodic va riation trends for the stability of TM-BN,the adsorption strength and the kind of O_(2)species,and the resulting CH_(4)activation performance on TM-BNs.The formed peroxide O_(2)^(2-)of which the O-O bond could be broken and O-anions are found to be reactive oxygen species for CH_(4)activation under the mild conditions.It is found that the redox potential of TM center,including its valence electron number,coordination environment,and the work function of TM-BN,is the underlying reason for the formation of different oxygen species and the resulting activity for CH_(4)oxidative dehydrogenation.展开更多
基金supported by the National Natural Science Foundation of China(No.51972162)the Fundamental Research Funds for the Central Universities(No.2024300440).
文摘Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60876006 and 60376007)the Natural Science Foundation of Beijing, China (Grant No. 4072007)+2 种基金the Scientific Research Program of Beijing Municipal Commission of Education, China (Grant No.KM200910005018)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, Chinathe Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality
文摘Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions. Wile implantation energy of the ions is 19 keV, and the implantation dose is between 1015 ions/cm2 and 1016 ions/cm2. The doped c-BN thin films are then annealed at a temperature between 400℃ and 800℃. The results show that the surface resistivity of doped and annealed c-BN thin films is lowered by two to three orders, and the activation energy of c-BN thin films is 0.18 eV.
文摘Hexagonal boron nitride(h-BN)is a highly selective catalyst for oxidative dehydrogenation of light alkanes to produce the corresponding alkenes.Despite intense recent research effort,many aspects of the reaction mechanism,such as the observed supra-linear reaction order of alkanes,remain unresolved.In this work,we show that the introduction of a low concentration of propane in the feed of ethane oxidative dehydrogenation is able to enhance the C_(2)H_(6) conversion by 47%,indicating a shared reaction intermediate in the activation of ethane and propane.The higher activity of propane makes it the dominant radical generator in the oxidative co-dehydrogenation of ethane and propane(ODEP).This unique feature of the ODEP renders propane an effective probe molecule to deconvolute the two roles of alkanes in the dehydrogenation chemistry,i.e.,radical generator and substrate.Kinetic studies indicate that both the radical generation and the dehydrogenation pathways exhibit a first order kinetics toward the alkane partial pressure,leading to the observed second order kinetics of the overall oxidative dehydrogenation rate.With the steady-state approximation,a radical chain reaction mechanism capable of rationalizing observed reaction behaviors is proposed based on these insights.This work demonstrates the potential of ODEP as a strategy of both activating light alkanes in oxidative dehydrogenation on BN and mechanistic investigations.
基金the support from the National Natural Science Foundation of China (U20A20277, 52011530180, 52050410341, 51861130361, and 51861145312)Newton Advanced Fellowship by Royal Society (RP12G0414)+5 种基金Royal Academy of Engineering (TSPC-1070)Research Fund for Central Universities (N2025025)Xing Liao Talents Program (XLYC1807024 and XLYC1802024)Project funded by China Postdoctoral Science Foundation (2020TQ0060 and 2020M680965)NEU Innovation Team Project, Regional Innovation Joint Fund of Liaoning Province (2020-YKLH-39)Global Talents Recruitment Program endowed by the Chinese Government for their financial support。
文摘In the present investigation,the growth kinetics of interfacial reaction layer products between cubic boron nitride(CBN) and Cu-Sn-Ti filler metal has been thoroughly investigated.Detailed morphological and compositional features of respective compounds have been demonstrated for a wide brazing temperature ranging from 1153 K to 1223 K.It is found that within 30 minutes brazing holding time,the reaction layer growth is largely determined by the population of Ti N via effective Ti diffusion with an activation energy of 223.51 k J/mol,leading to parabolic growth patterns.It is further revealed that TiN grows both in axial and length dimensions,which eventually extends to the forefront and covers the reaction layer.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.30922010302)the Start-Up Grant from Nanjing University of Science and Technology (AE89991/397)。
文摘Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.
基金financial support from the National Natural Science Foundation of China(NSFC,Nos.21673072 and 91845111)Program of Shanghai Subject Chief Scientist(No.17XD1401400)+1 种基金Shanghai Science and Technology Committee(No.17520750100)the Fundamental Research Funds for the Central Universities。
文摘Methane(CH_(4))controllable activation is the key process for CH_(4)upgrading,which is sensitive to the surface oxygen species.The high thermal conductivity and superb thermal stability of the hexagonal boron nitride(h-BN)sheet makes a single transition metal atom doped hexagonal boron nitride monolayer(TM-BN)possible to be a promising material for catalyzing methane partial oxidation.The performances of 24 TM-BNs for CH_(4)activation are systematically investigated during the CH_(4)oxidation by means of first-principles computation.The calculation results unravel the periodic va riation trends for the stability of TM-BN,the adsorption strength and the kind of O_(2)species,and the resulting CH_(4)activation performance on TM-BNs.The formed peroxide O_(2)^(2-)of which the O-O bond could be broken and O-anions are found to be reactive oxygen species for CH_(4)activation under the mild conditions.It is found that the redox potential of TM center,including its valence electron number,coordination environment,and the work function of TM-BN,is the underlying reason for the formation of different oxygen species and the resulting activity for CH_(4)oxidative dehydrogenation.