期刊文献+
共找到19,490篇文章
< 1 2 250 >
每页显示 20 50 100
Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe)octahedrons 被引量:1
1
作者 Hao Yuan Xinhai Sun +2 位作者 Shuai Zhang Weilong Shi Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期298-309,共12页
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)... The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts. 展开更多
关键词 carbon dots MIL-101(Fe) PHOTOCATALYTIC Persulfate activation Tetracycline degradation
下载PDF
Thermal pretreatment of willow branches impacts yield and pore development of activated carbon in subsequent activation with ZnCl_(2) via modifying cellulose structure
2
作者 Linghui Kong Chao Li +7 位作者 Runxing Sun Shu Zhang Yi Wang Jun Xiang Song Hu Dong Wang Chuanjun Leng Xun Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期227-237,共11页
Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce d... Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280. 展开更多
关键词 Thermal pretreatment activation with ZnCl_(2) Willow branch activated carbon Biochar
下载PDF
Study of the reaction mechanism for preparing powdered activated coke with SO_(2)adsorption capability via one-step rapid activation method under flue gas atmosphere
3
作者 Binxuan Zhou Jingcai Chang +5 位作者 Jun Li Jinglan Hong Tao Wang Liqiang Zhang Ping Zhou Chunyuan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期158-168,共11页
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m... In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation. 展开更多
关键词 Reaction mechanism Powdered activated coke preparation SO_(2)adsorption One-step rapid activation Flue gas atmosphere
下载PDF
Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption
4
作者 Yifang Mi Wenqiang Wang +4 位作者 Sen Zhang Yalong Guo Yufeng Zhao Guojin Sun Zhihai Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期106-116,共11页
Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs ... Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs possessed an ultra-high specific surface(2178.90 m^(2)·g^(-1))and plenty of micro-and meso-pores,as well as a high pore volume(1.01 cm^(3)·g^(-1)).Ascribed to ultra-high surface area,π-π interaction,electrostatic interaction,as well as hydrogen-bonding interactions,the CBACs displayed huge superiority in efficient dye removal.The saturated methylene blue adsorption capacity by CBACs could be as high as 1143.4 mg·g^(-1),superior to that of other reported biomass-activated carbons.The adsorption was endothermic and modeled well by the pseudo-second-order kinetic,intra-particle diffusion,and Langmuir models.This work presented the effectiveness of Taihu cyanobacteria adsorbent ascribed to its super large specific surface area and high adsorption ability. 展开更多
关键词 activated carbon BIOMASS Dye adsorption Taihu cyanobacteria
下载PDF
In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites
5
作者 Peng Zhang Fukuan Li +6 位作者 Mingming He Silu Huo Xueli Zhang Benqiang Cen Dezhi Fang Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期126-137,共12页
Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.Howev... Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption. 展开更多
关键词 Electro-assisted adsorption ELECTROSORPTION Phosphate removal active centers MOF-derived carbon
下载PDF
High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO_(2)/N_(2) and CH_(4)/N_(2) separation
6
作者 Siang Chen Wenling Wu +4 位作者 Zhaoyang Niu Deqi Kong Wenbin Li Zhongli Tang Donghui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期282-297,共16页
Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In... Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane. 展开更多
关键词 activated carbon carbon molecular sieve Adsorbent evaluation Adsorption equilibrium and kinetics Heat of adsorption SELECTIVITY
下载PDF
Properties of Activated Carbons from Sugarcane Leaves and Rice Straw Derived Charcoals by Activation at Low Temperature via KMnO_(4)Pre-Oxidation-Hydrolysis
7
作者 Sumrit Mopoung Narissara Namkaew and Sasiwan Srikasaem 《Journal of Renewable Materials》 EI CAS 2024年第8期1433-1454,共22页
Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous ... Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation. 展开更多
关键词 activated carbon potassium permanganate pre-oxidation-hydrolysis low carbonization temperature low activation temperature
下载PDF
Fate and Behavior of Tetracycline Resistance Genes in Activated Carbon Adsorption
8
作者 Sri Anggreini Alma Rizky Aurellya +1 位作者 Wenqing Li Fusheng Li 《Journal of Water Resource and Protection》 CAS 2024年第1期1-16,共16页
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using... The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment. 展开更多
关键词 Antibiotic Resistance Genes ADSORPTION activated carbon Drinking Water Treatment
下载PDF
Adsorption of Malachite Green Using Activated Carbon from Mangosteen Peel: Optimization Using Box-Behnken Design
9
作者 Nabila Eka Yuningsih Latifa Ariani +4 位作者 Suprapto Suprapto Ita Ulfin Harmami Harmami Hendro Juwono Yatim Lailun Ni’mah 《Journal of Renewable Materials》 EI CAS 2024年第5期981-992,共12页
In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.M... In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.Mala-chite green dye waste is a toxic and non-biodegradable material that damages the environment.Optimization of adsorption processes was carried out using Response Surface Methodology(RSM)with a Box-Behnken Design(BBD).The synthesized activated carbon was characterized using FTIR and SEM instruments.The FTIR spectra confirmed the presence of a sulfonate group(-SO_(3)H)in the activated carbon,indicating that the activation pro-cess using sulfuric acid was successful.SEM characterization shows that activated carbon has porous morphology.Optimization was carried out for three adsorption parameters,namely contact time(20,60,and 120 min),adsor-bent mass(0.005,0.025,and 0.05 g),and initial concentration of malachite green solution(5,50,and 100 mg·L^(-1)).The concentration of the malachite green solution was determined using a UV-Vis spectrophotometer at the max-imum wavelength of malachite green,618 nm.The optimum of malachite green adsorption using mangosteen peel activated carbon was obtained at a contact time of 80 min,an adsorbent mass of 0.032 g,and malachite green initial concentration of 25 mg·L^(-1),with a maximum removal percentage and maximum adsorption capacity of 93.66%and 19.345 mg·g^(-1),respectively. 展开更多
关键词 Response surface methodology DYES activated carbon experimental design
下载PDF
Preparation and Characterization of Activated Carbons from Palm Nut Shells: Effects of Calcination Temperature on Porosity and Chemical Properties
10
作者 Charly Mve Mfoumou Berthy Lionel Mbouiti +2 位作者 Spenseur Bouassa Mougnala Pradel Tonda-Mikiela Guy Raymond Feuya Tchouya 《Open Journal of Inorganic Chemistry》 2024年第2期19-32,共14页
Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepare... Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions. 展开更多
关键词 Palm Nut Shells activated carbon Calcination Temperature Porosity and Chemical Properties
下载PDF
Simultaneous Adsorption of Aqueous Pb2+, Cu2+, Zn2+, and Cd2+ Using Surfactant-Modified and Unmodified Activated Carbon in a Fixed Bed Column
11
作者 Morufu A. Olatunji Kamoru A. Salam Abdullahi M. Evuti 《Journal of Encapsulation and Adsorption Sciences》 2024年第1期1-24,共24页
The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activat... The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached. 展开更多
关键词 ADSORPTION Surfactant-Modified activated carbon MULTICOMPONENT Breakthrough Adsorption Capacity Fixed Bed Column
下载PDF
Improving the Quality of Baobab Oil by Filtration on Activated Carbon from the Fruit Capsules
12
作者 Edouard Mbarick Ndiaye Alioune Sow +5 位作者 Papa Guédel Faye Kalidou Ba Mouhamed Ndoye Omar Ibn Khatab Cisse Nicolas Cyrille Ayessou Mady Cisse 《Journal of Materials Science and Chemical Engineering》 2024年第1期69-83,共15页
The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of... The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of unsaturated fatty acids, sterols, and tocopherols. However, it undergoes numerous reactions during production, processing, transport, and storage, leading to undesirable products that make it unstable. The aim of this study was to provide local processors with innovative solutions for the treatment of unrefined vegetable oils. To this end, an experimental device for filtering crude oil on activated carbon made from fruit capsules was designed. The results obtained after the treatment show a significant decrease at (p < 5%) in acid value (1.62 to 0.58 mg KOH/g), peroxide value (4.40a to 0.50c mEqO<sub>2</sub>/Kg), chlorophyll concentration (1.81 to 0.50 mg/Kg) and primary and secondary oxidation products. According to these results, activated carbon’s adsorptive power eliminates oxidation products and certain pro-oxidants such as chlorophyll, resulting in a cleaner, more stable and better storable oil. 展开更多
关键词 activated carbon Adansonia digitata L. Baobab Fruit Baobab Oil Stability
下载PDF
Elimination, Kinetics and Thermodynamics of Fe(II) Ions by Adsorption in Static and Dynamic Conditions on Activated Carbons in Aqueous Media
13
作者 Spenseur Bouassa Mougnala Charly Mve Mfoumou +5 位作者 Berthy Lionel Mbouiti Pradel Tonda-Mikiela Francis Ngoye Ferdinand Evoung Evoung Jean Aubin Ondo Guy Raymond Feuya Tchouya 《Journal of Geoscience and Environment Protection》 2024年第10期181-203,共23页
This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared... This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol). 展开更多
关键词 Palm Nut Shells activated carbon Removal FE(II) Static and Dynamic Adsorption KINETICS Thermodynamics
下载PDF
Chemical Analysis of Activated Carbon from Bull and Cow Horns Pyrolysis to Be Used as Antidotes
14
作者 Alexandre Ngama Mwabi Pierre Yoniene Yassa Vestine Ntakarutimana 《Open Journal of Applied Sciences》 2024年第8期2133-2143,共11页
The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine... The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine adsorbent power. The pH was measured at a temperature of 20˚C using an “ANION 7010 ionomer” pH meter, the carbon (C) content was analyzed using a “EURO EA 3000” analyzer. and the electronic balance: “Sartorius CP-2P”, calcium (Ca) was analyzed using a DFS-8 spectrograph. For the adsorbency test, the 0.15% methylene blue R solution was used. At the end of this study, we found that the activated carbon from the bull horn demonstrated a carbon content that is higher than that of the cow horn (20.79% against 15.63%), activated carbon of cow horn is richer in calcium than that of bull horn (16.27% against 3.69%) and then the pH. The cow horn is higher than that of the bull horn (7.43 versus 6.5). For the adsorbent power, the sample (75% bull horn and 25% cow horn) was recorded with the greatest adsorbent power. Thus, from this study, it can be recommended as an activated carbon antidote to be used for poisonings treatment. 展开更多
关键词 activated carbon Bull Horn Cow Horn Oil Palm Nut Shells Absorbent Power
下载PDF
Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite 被引量:6
15
作者 Jie Fu Zhen Xu +4 位作者 Qing-Shan Li Song Chen Shu-Qing An Qing-Fu Zeng Hai-Liang Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期512-518,共7页
A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and th... A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and the combination of ZVI/AC- MDEL/NaCIO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaCIO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaCIO, we found that in the ZVI/AC-MEDL/NaCIO process, ZVI/AC could break the azo bond firstly and then MEDLfNaCIO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency. 展开更多
关键词 activated carbon microwave discharge electrodeless lamp Reactive Red 195 sodium hypochlorite zero-valent iron.
下载PDF
Highly active catalyst for vinyl acetate synthesis by modified activated carbon 被引量:5
16
作者 Chun Yan Hou Liang Rong Feng Fa Li Qiu 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第7期865-868,共4页
A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacet... A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carders by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 × 10^-3*e^3.17m. Reaction mechanism was proposed. C 2009 Liang Rong Feng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. 展开更多
关键词 Surface acidic groups Peroxyacetic acid activated carbon Catalyst for vinyl acetate synthesis
下载PDF
Performance of Electric Double Layer Capacitors using Active Carbons Prepared from Petroleum Coke by KOH and Vapor Re-Etching 被引量:3
17
作者 Xiaofeng WANG, Dazhi WANG Ji LIANGDepartment of Mechanical Engineering, Tsinghua University, Beijing 100084, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第3期265-269,共5页
The electrochemical storage of energy in a special kind of active carbon materials used as capacitor electrodes is considered. Petroleum coke was used for preparation of carbons with different porosities by KOH and va... The electrochemical storage of energy in a special kind of active carbon materials used as capacitor electrodes is considered. Petroleum coke was used for preparation of carbons with different porosities by KOH and vapor etching with catalysis of FeCI3 in turn. Carbon electrodes were fabricated and used as electrodes of double layer capacitors. Nitrogen adsorption was used to characterize the porous structure of the carbons. The electrochemical performance of the capacitors in 6 mol/L KOH was investigated with constant current charge and discharge experiments. A specific capacitance larger than 160 F/g was achieved with an electrode composed of 75% active carbon with a specific surface area of 1180 m2/g and 20% graphite as conductive agent. Evaluation of capacitor performance was conducted by different techniques, e.g. voltammetry and impedance spectroscopy. Characteristics of the capacitor were also discussed. A hybrid power source consisting of nickel- hydrogen and double layer capacitor was demonstrated by powering successfully a simulated power load encountered in communication equipment. 展开更多
关键词 activated carbon Re-etching Double layer capacitor SUPERCAPACITOR
下载PDF
Adsorption of Reactive Dyes on Activated Carbon Developed from <i>Enteromorpha prolifera</i> 被引量:2
18
作者 Deshuai Sun Zhongyi Zhang +1 位作者 Mengling Wang Yude Wu 《American Journal of Analytical Chemistry》 2013年第7期17-26,共10页
Activated carbon was prepared from Enteromorpha prolifera by zinc chloride activation. The adsorption behaviors of three reactive dyes (Reactive Red 23, Reactive Blue 171 and Reactive Blue 4) onto this biomass activat... Activated carbon was prepared from Enteromorpha prolifera by zinc chloride activation. The adsorption behaviors of three reactive dyes (Reactive Red 23, Reactive Blue 171 and Reactive Blue 4) onto this biomass activated carbon were investigated in batch systems. The experimental findings showed that the removal efficiencies of three dyes onto activated carbon were maximum at the initial solution pH of 4.5 - 6.0. Thermodynamic studies suggested that adsorption reaction was an endothermic and spontaneous process. Adsorption isotherm of the three dyes obeyed Freundlich isotherm modal. Dye adsorption capacities of activated carbon were 59.88, 71.94 and 131.93 mg·g?1 for RR23, RB171 and RB4 at 27?C, respectively. Second-order kinetic models fitted better to the equilibrium data of three dyes. The adsorption process on activated carbon was mainly controlled by intraparticle diffusion mechanism. 展开更多
关键词 activated carbon ENTEROMORPHA PROLIFERA Reactive Dye ADSORPTION ISOTHERM ADSORPTION Dynamics
下载PDF
Regeneration of activated carbon adsorbed EDTA by electrochemical method 被引量:7
19
作者 尤翔宇 柴立元 +3 位作者 王云燕 苏艳蓉 赵娜 舒余德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期855-860,共6页
Activated carbon after saturated adsorption of EDTA was used as particle electrode in a three-dimensional electrode reactor to treat EDTA-containing wastewater.Electrochemical method was used to regenerate activated c... Activated carbon after saturated adsorption of EDTA was used as particle electrode in a three-dimensional electrode reactor to treat EDTA-containing wastewater.Electrochemical method was used to regenerate activated carbon after many times of electrolysis.Based on the analysis of infrared spectra of activated carbon after adsorption and repeated electrolysis,EDTA was degraded into glycine,and then non-catalytic activated associated complex was formed with N—H bond on the activated carbon.The catalytic ability of the activated carbon vanished and the EDTA degradation efficiency was dropped.Activated carbon could be effectively regenerated by electrochemical method in the three-dimensional reactor.Effects of electric current,conductivity and pH on activated carbon regeneration were investigated,and the optimum conditions were concluded as follows:100-300 mA of current intensity,1.39 mS/cm of electric conductivity,60 min of electrolysis time and pH 6.0-8.0.Under the optimized conditions,the activity of the activated carbon can be recovered and the residual total organic carbon(TOC) was below 10 mg/L(the initial TOC was 200 mg/L) in the three-dimensional electrode reactor. 展开更多
关键词 activated carbon electrochemical regeneration three-dimensional electrode EDTA
下载PDF
Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution 被引量:6
20
作者 张晨 王涛 +1 位作者 刘晓 丁云杰 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期502-509,共8页
Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio sig... Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio significantly affected the catalytic performance. The corresponding lactic acid selectivity was in the order of LiOH〉NaOH〉KOH〉Ba(OH)2. An increase in LiOH/glycerol molar ratio ele‐vated the glycerol conversion and lactic acid selectivity to some degree, but excess LiOH inhibited the transformation of glycerol to lactic acid. In the presence of Pt/AC catalyst, the maximum selec‐tivity of lactic acid was 69.3% at a glycerol conversion of 100% after 6 h at 90 °C, with a Li‐OH/glycerol molar ratio of 1.5. The Pt/AC catalyst was recycled five times and was found to exhibit slightly decreased glycerol conversion and stable lactic acid selectivity. In addition, the experimental results indicated that reaction intermediate dihydroxyacetone was more favorable as the starting reagent for lactic acid formation than glyceraldehyde. However, the Pt/AC catalyst had adverse effects on the intermediate transformation to lactic acid, because it favored the catalytic oxidation of them to glyceric acid. 展开更多
关键词 GLYCEROL Lactic acid PLATINUM activated carbon OXIDATION Base type
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部