The black tourmaline produced in Lingshou of Hebei Province was characterized by X-ray diffraction and scanning electron microscope,and the effect of tourmaline on dehydrogenase activity of activated sludge was studie...The black tourmaline produced in Lingshou of Hebei Province was characterized by X-ray diffraction and scanning electron microscope,and the effect of tourmaline on dehydrogenase activity of activated sludge was studied.The results showed that tourmaline increased the dehydrogenase activity of activated sludge and enhanced the stability of dehydrogenase to pH change.It made the pH value of activated sludge with different initial pH value tend to about 7.4,and improved the dehydrogenase activity of activated sludge.In addition to affecting water molecular groups,it was also related to maintaining the constant weak alkaline pH of the system.展开更多
The tetrazolium salt 2-(4-Iodophenyl) -3-( 4-nitrophenyl ) -5-phenyltetrazolium chloride (INT) was used as a tool fi)r estimating the activity of the electron transport system (ETS) in activated sludge in a 4...The tetrazolium salt 2-(4-Iodophenyl) -3-( 4-nitrophenyl ) -5-phenyltetrazolium chloride (INT) was used as a tool fi)r estimating the activity of the electron transport system (ETS) in activated sludge in a 40 L sequencing batch reactor (SBR) and domestie sewage as the organic substrate. The activity of INT-ETS during one SBR cycle, and the effeet of the ammonia concentration and the concentration of organic matter influent on the INT-ETS activity were investigated. The results show that: the use of INT is reliable in estimating of biological activity of activated sludge of SBR system; Biological activity of organic matter biodegradation, nitrification and denitrification process in SBR system reduce orderly. Obviously, INT-ETS activity reduces from 232.59 rny/(g · h) to 190. 65 rag/( g ·h) at first and then decreases to 113.88 my/( g · h) when influent concentration of COD and NH4+-N is 300 my/L and 40 mg/L respectively. In addition, various influent Nitrogen (NH4+-N are 14.5 mg/L and 42.0 my/L) and organic shock loading (COD are 293 mg/L and 685 my/L) experimenntions cure prove that operational conditions have no obvious effect on INT-ETS variation rule. However, the time of the appearance of feature points marking different reaction phase is influenced.展开更多
The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were expl...The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.展开更多
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two o...Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.展开更多
In order to evaluate the hydrogen-producing efficiency of anaerobic activated sludge in Anaerobic Baffled Reactor(ABR)fermentation processes,the optimal conditions for hydrogen producing hydrogenase method on methyl v...In order to evaluate the hydrogen-producing efficiency of anaerobic activated sludge in Anaerobic Baffled Reactor(ABR)fermentation processes,the optimal conditions for hydrogen producing hydrogenase method on methyl viologen(MV)assay was used to detect the hydrogen production activity of the activated sludge.The most favorable parameters such as 0.6 mL sodium acetate buffer(pH 5.0),100 μL lysozyme,0.2 mL sodium dibromoethane(9.0 mmol/L)and 0.7 mmol/L iron added into 1 mL activated sludge(2.66~26.64 gMLVSS/L)were found.Furthermore,reaction temperature and culture time were detected as 40 ℃ and 30 min respectively.Sodium thiosulfate and sodium sulfides were taken as the reducing agent while trichloroacetic acid as terminator.Under the MV optimal conditions,micro-toxic Dimethyl sulfoxide(DMSO)get higher security and better accuracy.The sensitivity of the detection methods(DMSO as electron carrier)was increased by more than 30%.The results show that the optimal conditions can be applied to measure hydrogenase activity correlating with its specific hydrogen production rate in a hydrogen-producing anaerobic activated sludge system.展开更多
[Objective] To explore the optimal extraction conditions of extracellular polymeric substances (EPS) from activated sludge. [Method] The efficiency of five methods (H2SO4, formaldehyde-NaOH, mixing, heating and NaO...[Objective] To explore the optimal extraction conditions of extracellular polymeric substances (EPS) from activated sludge. [Method] The efficiency of five methods (H2SO4, formaldehyde-NaOH, mixing, heating and NaOH) on the extraction of EPS was investigated comparatively. The optimal extraction conditions of the most suitable method were determined. [Result] NaOH method is most effective in extracting EPS with less DNA contamination and shortened extraction period. The optimal extraction condition was pH of 11, extraction time of 10 min and agitation speed of 80-120 r/min. [Conclusion] The determined optimal extraction condition provided theoretical basis for EPS study.展开更多
Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewat...Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewatering of activated sludge. Furthermore, EPS also show great efficiency in binding heavy metals. So EPS are key factors influencing reduction in sludge volume and mass, as well as activity and utilization of sludge. EPS are of considerable environmental interest and hundreds of articles on EPS have been published abroad, while information on EPS in China is limited. In this paper, results of over 60 publications related to constituents and characteristics of EPS and their influences on flocculation, settling and dewatering of sludge are compiled and analyzed. Metal-binding ability of EPS is also discussed, together with a brief consideration of possible research interests in the future.展开更多
The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. T...The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.展开更多
Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 m...Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pre-treated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃. Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS.展开更多
We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction frag...We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.展开更多
The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal perc...The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/(L·d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.展开更多
The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH ...The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with increasing temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were improved significantly when WAS was fermented at pH 10.展开更多
The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃...The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.展开更多
Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and the...Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and thermal shock) on yield and purity of the total DNA extracted from activated sludge were investigated. It was found that SDS and mechanical mill were the most effective ways for cell lysis, and both gave the highest DNA yields, while by SDS and thermal shock, the purest DNA extract could be obtained. The combination of SDS with other lysis treatment, such as sonication and thermal shock, could apparently increase the DNA yields but also result in severe shearing. For the purification of the crude DNA extract, polyvinyl polypyrrolidone was used for the removal of humic contaminants. Cetyltrimethyl ammonium bromide, potassium acetate and phenol/chloroform were used to remove proteins and polysaccharides from crude DNA. Crude DNA was further purified by isopropanol precipitation. Thus, a suitable protocol was proposed for DNA extraction, yielding about 49.9 mg (total DNA)/g volatile suspended solids, and the DNA extracts were successfully used in PCR amplifications for 16S rDNA and 16S rDNA V3 region. The PCR products of 16S rDNA V3 region allowed the DGGE analysis (denatured gradient gel electrophoresis) to be possible.展开更多
Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aer...Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L^-1 to 4518 mg.L^-1 and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlates to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.展开更多
The biosorption potential of dried activated sludge as a biosorbent for zinc(Ⅱ) removal from aqueous solution was investigated.The effects of initial pH,contact time,initial zinc ion concentration,and adsorbent dos...The biosorption potential of dried activated sludge as a biosorbent for zinc(Ⅱ) removal from aqueous solution was investigated.The effects of initial pH,contact time,initial zinc ion concentration,and adsorbent dosage on the biosorption processes were determined,and the equilibrium data were modeled by the Langmuir and Freundlich isotherms.The Langmuir isotherm model (R 2=0.999) was proved to fit the equilibrium data much better than the Freundlich isotherm model (R 2=0.918).The monolayer adsorption capacity of dried activated sludge for zinc(Ⅱ) was found to be 17.86 mg/g at pH of 5 and 25°C.The kinetic data were tested using pseudo firstand second-order models.The results suggested that the pseudo second-order model (R 2 〉 0.999) was better for the description of the adsorption behavior of zinc(Ⅱ) onto the dried activated sludge.Fourier transform infrared spectral analysis showed that the dominant mechanism of zinc(Ⅱ) biosorption onto the dried activated sludge was the binding between amide groups and zinc ions.展开更多
The process of using flat-sheet membrane for simultaneous sludge thickening and digestion (MSTD) was employed. The variations of sludge concentration and rheology were characterized and simulated. Based on mass bala...The process of using flat-sheet membrane for simultaneous sludge thickening and digestion (MSTD) was employed. The variations of sludge concentration and rheology were characterized and simulated. Based on mass balance analysis, mathematical models were developed and successfully used to predict and evaluate the variations of sludge concentration and the digestion efficiency in the MSTD process. The apparent viscosity of sludge could be modeled as functions of mixed liquor suspended solids and shear rates. The sludge in the MSTD process showed both shear-thinning and viscoplastic behaviour, and under various shear rates different rheological models could be chosen to predict their flow behaviour. It was also found that sludge concentration and viscosity had significant correlations with membrane fouling in the MSTD process.展开更多
The occurrence and abundance of the microfauna groups were compared with the physico-chemical and operational parameters of the Baoding Lugang Sewage Treatment Plant in China. Attached and crawling ciliates were the d...The occurrence and abundance of the microfauna groups were compared with the physico-chemical and operational parameters of the Baoding Lugang Sewage Treatment Plant in China. Attached and crawling ciliates were the dominant groups of ciliates. Crawling ciliates and testate amoebae showed a strong association with effluent BOD5 (biochemical oxygen demand). Therefore, these two groups are likely to be useful bioindicators since their number decreased as the process produced poor quality effluent. Testate amoebae also had significant negative correlations with effluent TN (total nitrogen), NH4^+-N, SS (suspended solids) and SVI (sludge volumetric index), which means that this group of ciliates may be indicators of good performance of the activated sludge system. Carnivorous ciliates and flagellates had significant positive correlations with SVI, suggesting that these two groups may be indicators of bad settlement conditions of sludge. As identification of the microfauna species is difficult and time-consuming, we recommend using microfauna functional groups to evaluate the performance of the activated sludge system.展开更多
To investigate the influence of salinity variations on the performance of activated sludge systems, treating domestic wastewater. Methods The completely mixed reactor was used and operated in a batch-wis...To investigate the influence of salinity variations on the performance of activated sludge systems, treating domestic wastewater. Methods The completely mixed reactor was used and operated in a batch-wise mode. The activated sludge taken from the Gaobeidian Wastewater Treatment Plant was used as a seeding sludge. Total organic carbon (TOC), oxygen uptake rate (OUR) and suspended solids (SS) were used as parameters to characterize the performance of the treatment systems. TOC was measured using a TOC-analyzer (TOC-5000, Japan). The OUR value was measured with a dissolved oxygen meter (YSI model-58). SS was measured gravimetrically. Results The TOC removal efficiency and the OUR value of activated sludge were not deteriorated when the NaCl shock concentration was less than 0.5 g/L. However, when the NaCl shock concentrations were up to 10g/L and 20 g/L, the OUR of activated sludge was reduced by 35% and TOC removal efficiency was dropped by 30%, compared with the control experiment without NaCl shock loading. Conclusion The effect of NaCl shock loading on the activated sludge wastewater treatment system is dependant upon the NaCl concentrations and the degree of influence can be inferred through the change of substrate utilization rate at different shock NaCl loadings.展开更多
文摘The black tourmaline produced in Lingshou of Hebei Province was characterized by X-ray diffraction and scanning electron microscope,and the effect of tourmaline on dehydrogenase activity of activated sludge was studied.The results showed that tourmaline increased the dehydrogenase activity of activated sludge and enhanced the stability of dehydrogenase to pH change.It made the pH value of activated sludge with different initial pH value tend to about 7.4,and improved the dehydrogenase activity of activated sludge.In addition to affecting water molecular groups,it was also related to maintaining the constant weak alkaline pH of the system.
基金Sponsored by the National Water Pollution Control and Management Technology Major Projects(Grant No.2012ZX07408001-07,2012ZX07201001-01)
文摘The tetrazolium salt 2-(4-Iodophenyl) -3-( 4-nitrophenyl ) -5-phenyltetrazolium chloride (INT) was used as a tool fi)r estimating the activity of the electron transport system (ETS) in activated sludge in a 40 L sequencing batch reactor (SBR) and domestie sewage as the organic substrate. The activity of INT-ETS during one SBR cycle, and the effeet of the ammonia concentration and the concentration of organic matter influent on the INT-ETS activity were investigated. The results show that: the use of INT is reliable in estimating of biological activity of activated sludge of SBR system; Biological activity of organic matter biodegradation, nitrification and denitrification process in SBR system reduce orderly. Obviously, INT-ETS activity reduces from 232.59 rny/(g · h) to 190. 65 rag/( g ·h) at first and then decreases to 113.88 my/( g · h) when influent concentration of COD and NH4+-N is 300 my/L and 40 mg/L respectively. In addition, various influent Nitrogen (NH4+-N are 14.5 mg/L and 42.0 my/L) and organic shock loading (COD are 293 mg/L and 685 my/L) experimenntions cure prove that operational conditions have no obvious effect on INT-ETS variation rule. However, the time of the appearance of feature points marking different reaction phase is influenced.
基金supported by the National Natural Science Foundation of China(No.41276067)the Air Liquide(China)R&D Co.,Ltd.(No.20200216).
文摘The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
文摘Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.
基金Sponsored by the the National High Technology Research and Development Program of China(Grant No.2006AA05Z109)Harbin Municipal Scienceand Technology Innovation Talents of Special Fund Projects(Grant No.2009RFXXS004)
文摘In order to evaluate the hydrogen-producing efficiency of anaerobic activated sludge in Anaerobic Baffled Reactor(ABR)fermentation processes,the optimal conditions for hydrogen producing hydrogenase method on methyl viologen(MV)assay was used to detect the hydrogen production activity of the activated sludge.The most favorable parameters such as 0.6 mL sodium acetate buffer(pH 5.0),100 μL lysozyme,0.2 mL sodium dibromoethane(9.0 mmol/L)and 0.7 mmol/L iron added into 1 mL activated sludge(2.66~26.64 gMLVSS/L)were found.Furthermore,reaction temperature and culture time were detected as 40 ℃ and 30 min respectively.Sodium thiosulfate and sodium sulfides were taken as the reducing agent while trichloroacetic acid as terminator.Under the MV optimal conditions,micro-toxic Dimethyl sulfoxide(DMSO)get higher security and better accuracy.The sensitivity of the detection methods(DMSO as electron carrier)was increased by more than 30%.The results show that the optimal conditions can be applied to measure hydrogenase activity correlating with its specific hydrogen production rate in a hydrogen-producing anaerobic activated sludge system.
基金Supported by the National High-tech Research and Develop Program of China("863"Program)(2009AA064704)the National Natural Science Foundation of China(51038003)the Program for New Century Excellent Talents in University by the State Education Ministry(NCET-08-161)~~
文摘[Objective] To explore the optimal extraction conditions of extracellular polymeric substances (EPS) from activated sludge. [Method] The efficiency of five methods (H2SO4, formaldehyde-NaOH, mixing, heating and NaOH) on the extraction of EPS was investigated comparatively. The optimal extraction conditions of the most suitable method were determined. [Result] NaOH method is most effective in extracting EPS with less DNA contamination and shortened extraction period. The optimal extraction condition was pH of 11, extraction time of 10 min and agitation speed of 80-120 r/min. [Conclusion] The determined optimal extraction condition provided theoretical basis for EPS study.
基金The National Natural Science Foundation of China (No. 50578053) and the Harbin Young Scientist Fund (No. 2003AFXXJ025)
文摘Extracellular polymeric substances (EPS) are the predominant constituents of activated sludge and represent up to 80% of the mass of activated sludge. They play a crucial role in the flocculation, settling and dewatering of activated sludge. Furthermore, EPS also show great efficiency in binding heavy metals. So EPS are key factors influencing reduction in sludge volume and mass, as well as activity and utilization of sludge. EPS are of considerable environmental interest and hundreds of articles on EPS have been published abroad, while information on EPS in China is limited. In this paper, results of over 60 publications related to constituents and characteristics of EPS and their influences on flocculation, settling and dewatering of sludge are compiled and analyzed. Metal-binding ability of EPS is also discussed, together with a brief consideration of possible research interests in the future.
基金The National New Century Scholarship (No. NCET-05-0387) the France-China P2R Programs and the Specialized Research Fundfor the Doctoral Program of Higher Education (No. 20050247016)
文摘The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.
文摘Activated sludge was immobilized into Ca-alginate beads via entrapment, and biosorption of three heavy metal ions, copper(Ⅱ), zinc(Ⅱ), and chromimum(Ⅱ), from aqueous solution in the concentration range of 10\_100 mg/L was studied by using both entrapped activated sludge and inactivated free biomass at pH≤5. A biphasic metal adsorption pattern was observed in all immobilized biomass experiments. The biosorption of metal ions by the biosorbents increased with the initial concentration increased in the medium. The adsorption rate of immobilized pre-treated activated sludge(PAS) was much lower than that of free PAS due to the increase in mass transfer resistance resulting from the polymeric matrix. Biosorption equilibrium of beads was established in about 20 h and the adsorbed heavy metal ions did not change further with time. No significant effect of temperature was observed in the test for free biomass while immobilized PAS appeared to be strong temperature dependent in the test range of 10 and 40℃. Besides, the content of activated sludge in the calcium alginate bead has an influence on the uptake of heavy metals. The sorption equilibrium was well modeled by Langmuir isotherm, implying monomolecular adsorption mechanism. Carboxyl group in cell wall played an important role in surface adsorption of heavy metal ions on PAS.
基金supported by the Key Projects in National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (No.2006BAC19B01-02)the Mega-projects of Science Research for Water (No.2008ZX07313-3)the Program of Introducing Talents of Discipline to Universities
文摘We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.
文摘The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/(L·d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.
基金supported by the Hi-TechResearch and Development Program (863) of China(No. 2007AA06Z326)the Key Projects of National Wa-ter Pollution Control and Management of China (No.2008ZX07315-003, 2008ZX07316-002)the Key Lab-oratory of Environmental Science and Engineering ofJiangsu Province (No. ZD071201).
文摘The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with increasing temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were improved significantly when WAS was fermented at pH 10.
文摘The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.
基金This work was supported by the China Postdoctoral Science Foundation(No.20060390060).
文摘Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and thermal shock) on yield and purity of the total DNA extracted from activated sludge were investigated. It was found that SDS and mechanical mill were the most effective ways for cell lysis, and both gave the highest DNA yields, while by SDS and thermal shock, the purest DNA extract could be obtained. The combination of SDS with other lysis treatment, such as sonication and thermal shock, could apparently increase the DNA yields but also result in severe shearing. For the purification of the crude DNA extract, polyvinyl polypyrrolidone was used for the removal of humic contaminants. Cetyltrimethyl ammonium bromide, potassium acetate and phenol/chloroform were used to remove proteins and polysaccharides from crude DNA. Crude DNA was further purified by isopropanol precipitation. Thus, a suitable protocol was proposed for DNA extraction, yielding about 49.9 mg (total DNA)/g volatile suspended solids, and the DNA extracts were successfully used in PCR amplifications for 16S rDNA and 16S rDNA V3 region. The PCR products of 16S rDNA V3 region allowed the DGGE analysis (denatured gradient gel electrophoresis) to be possible.
基金Supported by the Shanghai Committee of Education (07ZZ158)
文摘Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L^-1 to 4518 mg.L^-1 and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlates to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.
基金supported by the National Natural Science Foundation of China (No. 50778066)the National Science and Technology Support Program of China(No. 2006BAJ04A13)+1 种基金the Program for New Century Excellent Talents in University from the Ministry of Education of China (No. NCET-08-0181)the China Postdoctoral Science Foundation (No. 200801338)
文摘The biosorption potential of dried activated sludge as a biosorbent for zinc(Ⅱ) removal from aqueous solution was investigated.The effects of initial pH,contact time,initial zinc ion concentration,and adsorbent dosage on the biosorption processes were determined,and the equilibrium data were modeled by the Langmuir and Freundlich isotherms.The Langmuir isotherm model (R 2=0.999) was proved to fit the equilibrium data much better than the Freundlich isotherm model (R 2=0.918).The monolayer adsorption capacity of dried activated sludge for zinc(Ⅱ) was found to be 17.86 mg/g at pH of 5 and 25°C.The kinetic data were tested using pseudo firstand second-order models.The results suggested that the pseudo second-order model (R 2 〉 0.999) was better for the description of the adsorption behavior of zinc(Ⅱ) onto the dried activated sludge.Fourier transform infrared spectral analysis showed that the dominant mechanism of zinc(Ⅱ) biosorption onto the dried activated sludge was the binding between amide groups and zinc ions.
基金supported by the Foundation of Chinese State Key Laboratory of Pollution Control and Resource Reuse for Young Scholars (No. PCRRY08005)by the Science and Technology Commission of Shanghai Municipality (No. 08231200200)
文摘The process of using flat-sheet membrane for simultaneous sludge thickening and digestion (MSTD) was employed. The variations of sludge concentration and rheology were characterized and simulated. Based on mass balance analysis, mathematical models were developed and successfully used to predict and evaluate the variations of sludge concentration and the digestion efficiency in the MSTD process. The apparent viscosity of sludge could be modeled as functions of mixed liquor suspended solids and shear rates. The sludge in the MSTD process showed both shear-thinning and viscoplastic behaviour, and under various shear rates different rheological models could be chosen to predict their flow behaviour. It was also found that sludge concentration and viscosity had significant correlations with membrane fouling in the MSTD process.
文摘The occurrence and abundance of the microfauna groups were compared with the physico-chemical and operational parameters of the Baoding Lugang Sewage Treatment Plant in China. Attached and crawling ciliates were the dominant groups of ciliates. Crawling ciliates and testate amoebae showed a strong association with effluent BOD5 (biochemical oxygen demand). Therefore, these two groups are likely to be useful bioindicators since their number decreased as the process produced poor quality effluent. Testate amoebae also had significant negative correlations with effluent TN (total nitrogen), NH4^+-N, SS (suspended solids) and SVI (sludge volumetric index), which means that this group of ciliates may be indicators of good performance of the activated sludge system. Carnivorous ciliates and flagellates had significant positive correlations with SVI, suggesting that these two groups may be indicators of bad settlement conditions of sludge. As identification of the microfauna species is difficult and time-consuming, we recommend using microfauna functional groups to evaluate the performance of the activated sludge system.
基金The work was supported by the National Natural Science Foundation of China (Grant No. 29637010 59978020 50325824).
文摘To investigate the influence of salinity variations on the performance of activated sludge systems, treating domestic wastewater. Methods The completely mixed reactor was used and operated in a batch-wise mode. The activated sludge taken from the Gaobeidian Wastewater Treatment Plant was used as a seeding sludge. Total organic carbon (TOC), oxygen uptake rate (OUR) and suspended solids (SS) were used as parameters to characterize the performance of the treatment systems. TOC was measured using a TOC-analyzer (TOC-5000, Japan). The OUR value was measured with a dissolved oxygen meter (YSI model-58). SS was measured gravimetrically. Results The TOC removal efficiency and the OUR value of activated sludge were not deteriorated when the NaCl shock concentration was less than 0.5 g/L. However, when the NaCl shock concentrations were up to 10g/L and 20 g/L, the OUR of activated sludge was reduced by 35% and TOC removal efficiency was dropped by 30%, compared with the control experiment without NaCl shock loading. Conclusion The effect of NaCl shock loading on the activated sludge wastewater treatment system is dependant upon the NaCl concentrations and the degree of influence can be inferred through the change of substrate utilization rate at different shock NaCl loadings.