期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Integrated analyses of transcriptomics and network pharmacology reveal leukocyte characteristics and functional changes in subthreshold depression,elucidating the curative mechanism of Danzhi Xiaoyao powder
1
作者 Kunyu Li Leiming You +5 位作者 Jianhua Zhen Guangrui Huang Ting Wang Yanan Cai Yunan Zhang Anlong Xu 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第1期3-20,共18页
Objective:To investigate the molecular mechanism and identify potential drugs for subthreshold depression(SD),and elucidate the detalied mechanism of Danzhi Xiaoyao powder(DZXY)in SD.Methods:Using RNA-sequencing,we id... Objective:To investigate the molecular mechanism and identify potential drugs for subthreshold depression(SD),and elucidate the detalied mechanism of Danzhi Xiaoyao powder(DZXY)in SD.Methods:Using RNA-sequencing,we identified differentially expressed genes(DEGs)in leukocytes of SD compared to healthy controls,deciphered their functions and pathways,and identified the hub genes of SD.We also assessed changes in leukocyte transcription factor activity in patients with SD using the TELis platform.The Connectivity Map database was retrieved to screen candidate drugs for SD.Based on network pharmacology,we elucidated the"multi-component,multi-target,and multi-pathway"mechanism of DZXY in the treatment of SD.Results:We identified 1080 DEGs(padj<0.05 and|log2(fold change)l≥1&protein coding)in the leukocytes of patients with SD.These DEGs,including hub genes,were primarily involved in immune and inflammatory response-related processes.Transcription factor activity analysis revealed similarities between the leukocyte transcriptome profile in SD and the conserved transcriptional response to adversities in immune cells.Connectivity Map analysis identified 28 potential drugs for SD treatment,particularly SB-202190 and TWS-119.Constructing the"Direct Compounds-Direct Targets-Pathways"network for DZXY and SD revealed the curative mechanisms of DZXY in SD,primarily including inflammatory response,lipid metabolism,immune response,and other processes.Conclusion:These results provide new insights into the characteristics and functional changes of leukocytes in SD,partially illustrate the pathogenesis of SD,and suggest potential drugs for SD.The curative mechanisms of DZXY in SD are also partially elucidated. 展开更多
关键词 Subthreshold depression LEUKOCYTE mRNAbiomarker CTRA transcription factor activity CMAP Danzhi Xiaoyaopowder Networkpharmacology
下载PDF
Silencing of signal transducer and activator of transcription 3 expression by RNA interference suppresses growth of human hepatocellular carcinoma in tumor-bearing nude mice 被引量:13
2
作者 Jing Li Yun-Feng Piao +2 位作者 Zheng Jiang Li Chen Hai-Bo Sun 《World Journal of Gastroenterology》 SCIE CAS CSCD 2009年第21期2602-2608,共7页
AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude... AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude mice in vivo.METHODS: To construct the recombinant plasmid of pSilencer 3.0-H1-STAT3-siRNA-GFP (pSHI-siRNA- STAT3) and establish the tumor-bearing nude mouse model of the HCC cell line SMMC7721, we used intratumoral injection together with electroblotting to transfect the recombinant plasmid pSHI-siRNA- STAT3 into the transplanted tumor. The weight of the nude mice and tumor volumes were recorded. STAT3 gene transcription was detected by semi-quantitative reverse transcription polymerase chain reaction (RT- PCR). Level of protein expression and location of STAT3 were determined by Western blotting and immunohistochemical staining. STAT3-related genes such as survivin, c-myc, VEGF, p53 and caspase3 mRNA and protein expression were detected in tumor tissues at the same time. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect apoptosis of tumor cells.RESULTS: The weight of the treated nude mice increased, and the tumor volume decreased markedly compared with those of the mock-treated and negative control groups (P 〈 0.01). The results of RT-PCR and Western blotting showed that mRNA and protein levels of STAT3 declined markedly in the treated group. The change in STAT3-related gene expression in tumor tissues at the mRNA and protein level also varied, the expression of survivin, VEGF and c-myc were obviously reduced, and expression of p53 and caspase3 increased (P 〈 0.01). Most of the tumor tissue ceils in the treated group developed apoptosis that was detected by TUNEL assay.CONCLUSION: Silencing of STAT3 expression by RNAi significantly inhibits expression of STAT3 mRNA and protein, and suppresses growth of human HCC in tumor-bearing nude mice. The mechanism may be related to down-regulation of survivin, VEGF and c-myc and up-regulation of p53 and caspase3 expression. Accordingly, the STAT3 gene may act as an important and effective target in gene therapy of HCC. 展开更多
关键词 RNA interference Signal transducerand activator of transcription 3 transcription factor Hepatocellular carcinoma Xenograft model antitumorassays Nude mouse
下载PDF
Observation of Transcription Regulation in the Mouse Heart Nuclear DNA Fragments and the Specific-protein Interaction by AFM
3
作者 袁明秀 Ren +6 位作者 Zhong Zheng Fei Deng Aiping Li Jianwei 《High Technology Letters》 EI CAS 2003年第1期17-21,共5页
Using atom force microscopy (AFM), in vitro transcription, PAGE and other experimental technologies, it is observed that, in active genes of mice (Balb/c) nuclear DNA fragments of non-transcriptional state, only regul... Using atom force microscopy (AFM), in vitro transcription, PAGE and other experimental technologies, it is observed that, in active genes of mice (Balb/c) nuclear DNA fragments of non-transcriptional state, only regulation sequences at both ends are associated with scaffold proteins (indissociable proteins) and some transcriptional factors such as complexes (dissociable proteins) made of gene-coding proteins and specific auxiliary small molecules, while there are no combining proteins in intermediate coding sequences. However, in active genes of transcriptional state, both regulation sequences and intermediate coding sequences are associated with active transcriptional factors by non-covalent bonds.This paper shows the prospective application of AFM observation and in vitro transcription in the research on gene expression and regulation. It also offers some theoretical basis for localization of specific genes in human genomes. 展开更多
关键词 auxiliary signal small molecules NAD+ transcriptional regulation factor transcriptional active factor space-time speciality AFM
下载PDF
The Role and Mechanism of Unfolded Protein Response Pathway in Tumor Drug Resistance
4
作者 Yaqi Han Bingjuan Zhou +2 位作者 Haizhi Qiao Lingyan Wang Jinku Zhang 《Proceedings of Anticancer Research》 2023年第6期65-71,共7页
In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS... In the process of tumor proliferation and metastasis,tumor cells encounter hypoxia,low glucose,acidosis,and other stressful environments.These conditions prompt tumor cells to generate endoplasmic reticulum stress(ERS).As a signal mechanism that mitigates ERS in eukaryotic cells,the unfolded protein response(UPR)pathway can activate cells and tissues,regulating pathological activities in various cells,and maintaining ER homeostasis.It forms the most crucial adaptive and defensive mechanism for cells.However,under the continuous influence of chemotherapy drugs,the quantity of unfolded proteins and erroneous proteins produced by tumor cells significantly increases,surpassing the normal regulatory range of UPR.Consequently,ERS fails to function properly,fostering tumor cell proliferation and the development of drug resistance.This review delves into the study of three UPR pathways(PERK,IRE1,and ATF6),elucidating the mechanisms of drug resistance and research progress in the signal transduction pathway of UPR related to cancers.It provides a profound understanding of the role and relationship between UPR and anti-tumor drugs,offering a new direction for effective clinical treatment. 展开更多
关键词 Unfolder protein response(UPR) Tumor resistance activating transcription factor 6(ATF6) Protein kinase RNA-like endoplasmic reticulum kinase(PERK) Inositol requiring enzyme 1(IRE1)
下载PDF
Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation 被引量:10
5
作者 Li-Jia Bu Han-Qing Yu +8 位作者 Lu-Lu Fan Xiao-Qiu Li Fang Wang Jia-Tao Liu Fei Zhong Cong-Jun Zhang Wei Wei Hua Wang Guo-Ping Sun 《World Journal of Gastroenterology》 SCIE CAS 2017年第6期986-998,共13页
AIM To clarify the mechanisms involved in the critical endoplasmic reticulum(ER) stress initiating unfolded protein response pathway modified by melatonin.METHODS Hepatoma cells, Hep G2, were cultured in vitro. Flow c... AIM To clarify the mechanisms involved in the critical endoplasmic reticulum(ER) stress initiating unfolded protein response pathway modified by melatonin.METHODS Hepatoma cells, Hep G2, were cultured in vitro. Flow cytometry and TUNEL assay were used to measure Hep G2 cell apoptosis. Western blotting and quantitative reverse transcription-polymerase chain reaction methods were used to determine the protein and messenger RNA levels of ER stress and apoptosis related genes' expression, respectively. Tissue microarray construction from patients was verified by immunohistochemical analysis.RESULTS In the present study, we first identified that melatoninselectively blocked activating transcription factor 6(ATF-6) and then inhibited cyclooxygenase-2 (COX-2) expression, leading to enhanced liver cancer cell apoptosis under ER stress condition. Dramatically increased CCAAT-enhancer-binding protein homologous protein level, suppressed COX-2 and decreased Bcl-2/Bax ratio by melatonin or ATF-6 si RNA contributed the enhanced Hep G2 cell apoptosis under tunicamycin (an ER stress inducer) stimulation. In clinical hepatocellular carcinoma patients, the close relationship between ATF-6 and COX-2 was further confirmed.CONCLUSION These findings indicate that melatonin as a novel selective ATF-6 inhibitor can sensitize human hepatoma cells to ER stress inducing apoptosis. 展开更多
关键词 MELATONIN Endoplasmic reticulum stress activating transcription factor 6 CYCLOOXYGENASE-2 Hepatocellular carcinoma
下载PDF
Role of activating transcription factor 3 (ATF3) in sublytic C5b-9-induced glomerular mesangial cell apoptosis 被引量:7
6
作者 Xiaoming Jiang Jing Zhang Mei Xia Wen Qiu Hui Wang Dan Zhao Yingwei Wang 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2010年第2期143-151,共9页
Sublytic complement C5b-9 complexes can cause cell apoptosis, but the mechanism of glomerular mesangial cell (GMC) apoptosis mediated by these complexes has not been well defined. The activating transcription factor... Sublytic complement C5b-9 complexes can cause cell apoptosis, but the mechanism of glomerular mesangial cell (GMC) apoptosis mediated by these complexes has not been well defined. The activating transcription factor 3 (ATF3) gene is an immediate early gene for the cell to cope with a variety of stress signals and can promote apoptosis of some cells. In this study, ATF3 expression and cell apoptosis in GMCs induced by sublytic C5b-9 were measured, and then the effects of ATF3 gene over-expression or knockdown on GMC apoptosis induced by sublytic C5b-9 were examined at a fixed time. The results showed that both ATF3 expression and GMC apoptosis were markedly increased and ATF3 over-expression obviously increased sublytic C5b-9-induced GMC apoptosis, whereas ATF3 gene silencing had a significant opposite effect. Collectively, these findings indicate that upregulation of ATF3 gene expression is involved in regulating GMC apoptosis induced by sublytic C5b-9 complexes. 展开更多
关键词 sublytic C5b-9 APOPTOSIS glomerular mesangial cell (GMC) activating transcription factor 3 (ATF3)
原文传递
Endoplasmic reticulum stress transducer old astrocyte specifically induced substance contributes to astrogliosis after spinal cord injury 被引量:4
7
作者 Atsushi Takazawa Naosuke Kamei +1 位作者 Nobuo Adachi Mitsuo Ochi 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期536-540,共5页
Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor... Old astrocyte specifically induced substance (OASIS) is an endoplasmic reticulum (ER) stress transducer specifically expressed in astrocytes and osteoblasts. OASIS regulates the differentiation of neural precursor cells into astrocytes in the central nervous system. This study aimed to elucidate the involvement of ER stress responses stimulated via OASIS in astrogliosis following spinal cord injury. In a mouse model of spinal cord contusion injury, OASIS mRNA and protein expression were evaluated at days 7 and 14. A significant increase in OASIS mRNA on day 7 and an increase in protein on days 7 and 14 was observed in injured spinal cords. Immunostaining on day 7 revealed co-localization of OASIS and astrocytes in the periphery of the injury site. Furthermore, anti-OASIS small interfering RNA (siRNA) was injected at the injury sites on day 5 to elucidate the function of OASIS. Treatment with anti-OASIS siRNA caused a significant decrease in OASIS mRNA on day 7 and protein on days 7 and 14, and was associated with the inhibition of astrogliosis and hindlimb motor function recovery. Results of our study show that OASIS expression synchronizes with astrogliosis and is functionally associated with astrogliosis after spinal cord injury. 展开更多
关键词 unfolded protein response cAMP-response element binding protein/activating transcription factor protein family C57BL/6 contusion injury reactive astrocyte functional recovery real-time polymerase chain reaction western blot immunohistochemistry glial fibrillary acidic protein
下载PDF
Activating transcription factor 4 protects mice against sepsis-induced intestinal injury by regulating gut-resident macrophages differentiation 被引量:3
8
作者 Zhenliang Wen Xi Xiong +10 位作者 Dechang Chen Lujing Shao Xiaomeng Tang Xuan Shen Sheng Zhang Sisi Huang Lidi Zhang Yizhu Chen Yucai Zhang Chunxia Wang Jiao Liu 《Chinese Medical Journal》 SCIE CAS CSCD 2022年第21期2585-2595,共11页
Background: Gut-resident macrophages (gMacs) supplemented by monocytes-to-gMacs differentiation play a critical role in maintaining intestinal homeostasis. Activating transcription factor 4 (ATF4) is involved in immun... Background: Gut-resident macrophages (gMacs) supplemented by monocytes-to-gMacs differentiation play a critical role in maintaining intestinal homeostasis. Activating transcription factor 4 (ATF4) is involved in immune cell differentiation. We therefore set out to investigate the role of ATF4-regulated monocytes-to-gMacs differentiation in sepsis-induced intestinal injury.Methods: Sepsis was induced in C57BL/6 wild type (WT) mice andAtf4-knockdown (Atf4+/-) mice by cecal ligation and puncture or administration of lipopolysaccharide (LPS). Colon, peripheral blood mononuclear cells, sera, lung, liver, and mesenteric lymph nodes were collected for flow cytometry, hematoxylin and eosin staining, immunohistochemistry, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively.Results: CD64, CD11b, Ly6C, major histocompatibility complex-II (MHC-II), CX3CR1, Ly6G, and SSC were identified as optimal primary markers for detecting the process of monocytes-to-gMacs differentiation in the colon of WT mice. Monocytes-to-gMacs differentiation was impaired in the colon during sepsis and was associated with decreased expression of ATF4 in P1 (Ly6Chi monocytes), the precursor cells of gMacs.Atf4 knockdown exacerbated the impairment of monocytes-to-gMacs differentiation in response to LPS, resulting in a significant reduction of gMacs in the colon. Furthermore, compared with WT mice,Atf4+/- mice exhibited higher pathology scores, increased expression of inflammatory factor genes (TNF-α, IL-1β), suppressed expression of CD31 and vascular endothelial-cadherin in the colon, and increased translocation of intestinal bacteria to lymph nodes and lungs following exposure to LPS. However, the aggravation of sepsis-induced intestinal injury resulting fromAtf4 knockdown was not caused by the enhanced inflammatory effect of Ly6Chi monocytes and gMacs.Conclusion: ATF4, as a novel regulator of monocytes-to-gMacs differentiation, plays a critical role in protecting mice against sepsis-induced intestinal injury, suggesting that ATF4 might be a potential therapeutic target for sepsis treatment. 展开更多
关键词 activating transcription factor 4 Mice LIPOPOLYSACCHARIDES MONOCYTES Leukocytes mononuclear Cell differentiation MACROPHAGES Sepsis Homeostasis gMacs Intestinal injury
原文传递
DNA methylation level of promoter region of activating transcription factor 5 in glioma 被引量:3
9
作者 Xiao-min HUA Juan WANG +10 位作者 Dong-meng QIAN Jing-yi SONG Hao CHEN Xiu-li ZHU Rui ZHOU Yu-dan ZHAO Xiu-zhi ZHOU Ling LI Li ZHANG Xu-xia SONG Bin WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2015年第9期757-762,共6页
Transcription factors, which represent an important class of proteins that play key roles in controlling cellular proliferation and cell cycle modulation, are attractive targets for cancer therapy. Previous researches... Transcription factors, which represent an important class of proteins that play key roles in controlling cellular proliferation and cell cycle modulation, are attractive targets for cancer therapy. Previous researches have shown that the expression level of activating transcription factor 5 (ATF5) was frequently increased in glioma and its acetylation level was related to glioma. The purposes of this study were to explore the methylation level of ATF5 in clinical glioma tissues and to explore the effect of ATF5 methylation on the expression of ATF5 in glioma. Methylation of the promoter region of ATF5 was assayed by bisulflte-specific polymerase chain reaction (PCR) sequencing analysis in 35 cases of glioma and 5 normal tissues. Quantitative real-time PCR (qRT-PCR) was also performed to detect ATF5 mRNA expression in 35 cases of glioma and 5 normal tissues. Clinical data were collected from the patients and analyzed. The percentages of methylation of the ATF5 gene in the promoter region in healthy control, patients with well-differentiated glioma, and those with poorly differentiated glioma were 87.78%, 73.89%, and 47.70%, respectively. Analysis of the methylation status of the promoter region of the ATF5 gene showed a gradually de- creased methylation level in poorly differentiated glioma, well-differentiated glioma, and normal tissues (P〈0.05). There was also a significant difference between well-differentiated glioma and poorly differentiated glioma (P〈0.05). ATF5 mRNA expression in glioma was significantly higher than that in the normal tissues (P〈0.05). This study provides the first evidence that the methylation level of ATF5 decreased, and its mRNA expression was evidently up-regulated in glioma. 展开更多
关键词 DNA methylation activating transcription factor Promoter region EPIGENETIC GLIOMA
原文传递
Cardiac Fibroblast-Specific Activating Transcription Factor 3 Promotes Myocardial Repair after Myocardial Infarction 被引量:3
10
作者 Yu-Lin Li Wen-Jing Hao +2 位作者 Bo-Ya Chen Jing Chen Guo-Qi Li 《Chinese Medical Journal》 SCIE CAS CSCD 2018年第19期2302-2309,共8页
Background:Myocardial ischemia injury is one of the leading causes of death and disability worldwide.Cardiac fibroblasts (CFs) have central roles in modulating cardiac function under pathophysiological conditions.A... Background:Myocardial ischemia injury is one of the leading causes of death and disability worldwide.Cardiac fibroblasts (CFs) have central roles in modulating cardiac function under pathophysiological conditions.Activating transcription factor 3 (ATF3) plays a self-protective role in counteracting CF dysfunction.However,the precise function of CF-specific ATF3 during myocardial infarction (MI) injury/repair remains incompletely understood.The aim of this study was to determine whether CF-specific ATF3 affected cardiac repair after MI.Methods:Fifteen male C57BL/6 wild-type mice were performed with MI operation to observe the expression of ATF3 at 0,0.5,1.0,3.0,and 7.0 days postoperation.Model for MI was constructed in ATF3TGfl/flColla2-Cre+ (CF-specific ATF3 overexpression group,n =5) and ATF3TGfl/flColla2-Cre-male mice (without CF-specific ATF3 overexpression group,n =5).In addition,five mice of ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol 1 a2-Cre-were subjected to sham MI operation.Heart function was detected by ultrasound and left ventricular remodeling was observed by Masson staining (myocardial fibrosis area was detected by blue collagen deposition area) at the 28th day after MI surgery in ATF3TGfl/flColla2-Cre+ and ATF3TGfl/flColla2-Cre-mice received sham or MI operation.Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect cell proliferation/cell cycle-related gene expression in cardiac tissue.BrdU staining was used to detect fibroblast proliferation.Results:After establishment of an MI model,we found that ATF3 proteins were increased in the heart of mice after MI surgery and dominantly expressed in CFs.Genetic overexpression of ATF3 in CFs (ATF3TGfl/flCol1a2-Cre+ group) resulted in an improvement in the heart function as indicated by increased cardiac ejection fraction (41.0% vs.30.5%,t =8.610,P =0.001) and increased fractional shortening (26.8% vs.18.1%,t =7.173,P =0.002),which was accompanied by a decrease in cardiac scar area (23.1% vs.11.0%,t =8.610,P =0.001).qRT-PCR analysis of CFs isolated from ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre-ischemic hearts revealed a distinct transcriptional profile in ATF3-overexpressing CFs,displaying pro-proliferation properties.BrdU-positive cells significantly increased in ATF3-overexpressing CFs than control CFs under angiotensin Ⅱ stimuli (11.5% vs.6.8%,t =31.599,P =0.001) or serum stimuli (31.6% vs.20.1%,t =31.599,P =0.001).The 5(6)-carboxyfluorescein N-hydroxysuccinimidyl ester assay showed that the cell numbers of the P2 and P3 generations were higher in the ATF3-overexpressing CFs at 24 h (P2:91.6% vs.71.8%,t =8.465,P=0.015) and 48 h (P3:81.6% vs.51.1%,t =9.029,P =0.012) after semm stimulation.Notably,ATF3 overexpression-induced CF proliferation was clearly increased in the heart after MI injury.Conclusions:We identify that CF-specific ATF3 might contribute to be MI repair through upregulating the expression of cell cycle/proliferation-related genes and enhancing cell proliferation. 展开更多
关键词 activating transcription Factor 3 Cardiac Fibroblast Myocardial Infarction PROLIFERATION
原文传递
Edaravone protects against oxygen-glucose-serum deprivation/restoration-induced apoptosis in spinal cord astrocytes by inhibiting integrated stress response 被引量:2
11
作者 Bin Dai Ting Yan +7 位作者 Yi-xing Shen You-jia Xu Hai-bin Shen Dong Chen Jin-rong Wang Shuang-hua He Qi-rong Dong Ai-liang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期283-289,共7页
We previously found that oxygen-glucose-serum deprivation/restoration(OGSD/R) induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-... We previously found that oxygen-glucose-serum deprivation/restoration(OGSD/R) induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2-alpha(eIF2α) and activating transcription factor 4(ATF4). We hypothesized that edaravone, a low molecular weight, lipophilic free radical scavenger, would reduce OGSD/R-induced apoptosis of spinal cord astrocytes. To test this, we established primary cultures of rat astrocytes, and exposed them to 8 hours/6 hours of OGSD/R with or without edaravone(0.1, 1, 10, 100 μM) treatment. We found that 100 μM of edaravone significantly suppressed astrocyte apoptosis and inhibited the release of reactive oxygen species. It also inhibited the activation of caspase-12 and caspase-3, and reduced the expression of homologous CCAAT/enhancer binding protein, phosphorylated(p)-PERK, p-eIF2α, and ATF4. These results point to a new use of an established drug in the prevention of OGSD/R-mediated spinal cord astrocyte apoptosis via the integrated stress response. 展开更多
关键词 nerve regeneration edaravone apoptosis astrocytes integrated stress response reactive oxygen species PERK eIF2α activating transcription factor 4 CCAAT/enhancer binding protein homologous protein caspase-3 caspase-12 neural regeneration
下载PDF
Activating transcription factor 3 in immune response and metabolic regulation 被引量:1
12
作者 Kavita Jadhav Yanqiao Zhang 《Liver Research》 2017年第2期96-102,共7页
Activating transcription factor 3(ATF3)is a member of the ATF/cyclic adenosine monophosphate(cAMP)-response element binding protein(CREB)family of transcription factors.In response to stress stimuli,ATF3 forms dimers ... Activating transcription factor 3(ATF3)is a member of the ATF/cyclic adenosine monophosphate(cAMP)-response element binding protein(CREB)family of transcription factors.In response to stress stimuli,ATF3 forms dimers to activate or repress gene expression.Further,ATF3 modulates the immune response,atherogenesis,cell cycle,apoptosis,and glucose homeostasis.Recent studies have shown that ATF3 may also be involved in pathogenesis of other diseases.However,more studies are needed to determine the role of ATF3 in metabolic regulation. 展开更多
关键词 activating transcription factor 3(ATF3) IMMUNE ONCOGENESIS Glucose homeostasis Liver injury
原文传递
Alternate day fasting aggravates atherosclerosis through the suppression of hepatic ATF3 in Apoe^(-/-)mice
13
作者 Yajuan Deng Xiaoyu Yang +13 位作者 Xueru Ye Youwen Yuan Yanan Zhang Fei Teng Danming You Xuan Zhou Wenhui Liu Kangli Li Shenjian Luo Zhi Yang Ruxin Chen Guojun Shi Jin Li Huijie Zhang 《Life Metabolism》 2024年第3期46-59,共14页
Atherosclerosis is the major contributor to cardiovascular mortality worldwide.Alternate day fasting(ADF)has gained growing attention due to its metabolic benefits.However,the effects of ADF on atherosclerotic plaque ... Atherosclerosis is the major contributor to cardiovascular mortality worldwide.Alternate day fasting(ADF)has gained growing attention due to its metabolic benefits.However,the effects of ADF on atherosclerotic plaque formation remain inconsistent and controversial in atherosclerotic animal models.The present study was designed to investigate the effects of ADF on atherosclerosis in apolipoprotein E-deficient(Apoe^(-/-))mice.Eleven-week-old male Apoe^(-/-)mice fed with Western diet(WD)were randomly grouped into ad libitum(AL)group and ADF group,and ADF aggravated both the early and advanced atherosclerotic lesion formation,which might be due to the disturbed cholesterol profiles caused by ADF intervention.ADF significantly altered cholesterol metabolism pathways and down-regulated integrated stress response(ISR)in the liver.The hepatic expression of activating transcription factor 3(ATF3)was suppressed in mice treated with ADF and hepatocyte-specific overexpression of Aft3 attenuated the effects of ADF on atherosclerotic plaque formation in Apoe^(-/-)mice.Moreover,the expression of ATF3 could be regulated by Krüppel-like factor 6(KLF6)and both the expressions of ATF3 and KLF6 were regulated by hepatic cellular ISR pathway.In conclusion,ADF aggravates atherosclerosis progression in Apoe^(-/-)mice fed on WD.ADF inhibits the hepatic ISR signaling pathway and decreases the expression of KLF6,subsequently inhibiting ATF3 expression.The suppressed ATF3 expression in the liver mediates the deteriorated effects of ADF on atherosclerosis in Apoe^(-/-)mice.The findings suggest the potentially harmful effects when ADF intervention is applied to the population at high risk of atherosclerosis. 展开更多
关键词 alternate day fasting ATHEROSCLEROSIS CHOLESTEROL integrated stress response activating transcription factor 3
原文传递
POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation 被引量:4
14
作者 Jian Xiao Yanni Xiong +7 位作者 Liu-Ting Yang Ju-Qiong Wang Zi-Mu Zhou Le-Wei Dong Xiong-Jie Shi Xiaolu Zhao Jie Luo Bao-Liang Song 《Protein & Cell》 SCIE CAS CSCD 2021年第4期279-296,共18页
Sterol-regulatory element binding proteins(SREBPs)are the key transcriptional regulators of lipid metabolism.The activation of SREBP requires translocation of the SREBP precursor from the endoplasmic reticulum to the ... Sterol-regulatory element binding proteins(SREBPs)are the key transcriptional regulators of lipid metabolism.The activation of SREBP requires translocation of the SREBP precursor from the endoplasmic reticulum to the Golgi,where it is sequentially cleaved by site-1 protease(S1P)and site-2 protease and releases a nuclear form to modulate gene expression.To search for new genes regulating cholesterol metabolism,we perform a genome-wide CRISPR/Cas9 knockout screen and find that partner of site-1 protease(POSH),encoded by C120RF49,is critically involved in the SREBP signaling.Ablation of POSH decreases the generation of nuclear SREBP and reduces the expression of SREBP target genes.POSH binds S1P,which is synthesized as an inactive protease(form A)and becomes fully mature via a two-step autocatalytic process involving forms B/B and C/C.POSH promotes the generation of the functional S1P-C/C from S1P-B/B(canonical cleavage)and,notably,from S1P-A directly(non-canonical cleavage)as well.This POSH-mediated S1P activation is also essential for the cleavages of other S1P substrates including ATF6,CREB3 family members and the a/p-subunit precursor of N-acetylglucosamine-1-phospho-transferase.Together,we demonstrate that POSH is a cofactor controlling S1P maturation and plays important roles in lipid homeostasis,unfolded protein response,lipoprotein metabolism and lysosome biogenesis. 展开更多
关键词 SREBP site-1 protease proteolytic activation unfolded protein response activating transcription factor 6 mannose-6-phosphate
原文传递
UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis 被引量:2
15
作者 Lei FANG Huan QI +5 位作者 Peng WANG Shiqing WANG Tianjiao LI Tian XIA Hailong PIAO Chundong GU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2022年第10期863-875,共13页
Up-frameshift 1(UPF1),as the most critical factor in nonsense-mediated messenger RNA(mRNA)decay(NMD),regulates tumor-associated molecular pathways in many cancers.However,the role of UPF1 in lung adenocarcinoma(LUAD)a... Up-frameshift 1(UPF1),as the most critical factor in nonsense-mediated messenger RNA(mRNA)decay(NMD),regulates tumor-associated molecular pathways in many cancers.However,the role of UPF1 in lung adenocarcinoma(LUAD)amino acid metabolism remains largely unknown.In this study,we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics.We further confirmed that UPF1 knockdown inhibited activating transcription factor 4(ATF4)and Ser51 phosphorylation of eukaryotic translation initiation factor 2α(eIF2α),the core proteins in amino acid metabolism reprogramming.In addition,UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells,which depends on the function of ATF4.Clinically,UPF1 mRNA expression is abnormal in LUAD tissues,and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival(OS)in LUAD patients.Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD. 展开更多
关键词 Up-frameshift 1(UPF1) activating transcription factor 4(ATF4) Amino acid metabolism Lung adenocarcinoma
原文传递
Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height 被引量:36
16
作者 Lei Wu Dengfeng Zhang +3 位作者 Ming Xue Jianjun Qian Yan He Shoucai Wang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第11期1053-1063,共11页
It has long been thought that growth‐regulating factors(GRFs) gene family members act as transcriptional activators to play important roles in multiple plant developmental processes. However, the recent characteriz... It has long been thought that growth‐regulating factors(GRFs) gene family members act as transcriptional activators to play important roles in multiple plant developmental processes. However, the recent characterization of Arabidopsis GRF7 showed that it functions as a transcriptional repressor of osmotic stress‐responsive genes. This highlights the complex and diverse mechanisms by which different GRF members use to take action. In this study, the maize(Zea mays L.) GRF10 was functionally characterized to improve this concept. The deduced ZmGRF10 protein retains the N‐terminal QLQ and WRC domains, the characteristic regions as protein‐interacting and DNA‐binding domains, respectively. However,it lacks nearly the entire C‐terminal domain, the regions executing transactivation activity. Consistently, ZmGRF10 protein maintains the ability to interact with GRF‐interacting factors(GIFs) proteins, but lacks transactivation activity.Overexpression of ZmGRF10 in maize led to a reduction in leaf size and plant height through decreasing cell proliferation,whereas the yield‐related traits were not affected. Transcriptome analysis revealed that multiple biological pathways were affected by ZmGRF10 overexpression, including a few transcriptional regulatory genes, which have been demonstrated to have important roles in controlling plant growth and development. We propose that ZmGRF10 aids in fine‐tuning the homeostasis of the GRF‐GIF complex in the regulation of cell proliferation. 展开更多
关键词 GIF growth-regulating factor maize overexpression RNA-Seq transcriptional activator
原文传递
Endoplasmic reticulum stress and liver diseases 被引量:8
17
作者 Xiaoying Liu Richard M.Green 《Liver Research》 2019年第1期55-64,共10页
Endoplasmic reticulum(ER)stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion.The unfolded protein response(UPR),comprising of inositol-requiring enzyme 1... Endoplasmic reticulum(ER)stress occurs when ER homeostasis is perturbed with accumulation of unfolded/misfolded protein or calcium depletion.The unfolded protein response(UPR),comprising of inositol-requiring enzyme 1 a(IRE1 a),double-stranded RNA-dependent protein kinase(PKR)-like ER kinase(PERK)and activating transcription factor 6(ATF6)signaling pathways,is a protective cellular response activated by ER stress.However,UPR activation can also induce cell death upon persistent ER stress.The liver is susceptible to ER stress given its synthetic and other biological functions.Numerous studies from human liver samples and animal disease models have indicated a crucial role of ER stress and the UPR signaling pathways in the pathogenesis of liver diseases,including non-alcoholic fatty liver disease(NAFLD),alcoholic liver disease(ALD),alpha-1 antitrypsin(AAT)deficiency(AATD),cholestatic liver disease,drug-induced liver injury,ischemia/reperfusion(I/R)injury,viral hepatitis and hepatocel-lular carcinoma(HCC).Extensive investigations have demonstrated the potential underlying mechanisms of the induction of ER stress and the contribution of the UPR pathways during the development of the diseases.Moreover,ER stress and the UPR proteins and genes have become emerging therapeutic targets to treat liver diseases. 展开更多
关键词 Endoplasmic reticulum(ER)stress Unfolded protein response(UPR) Inositol-requiring enzyme 1 a(IRE1 a) Double-stranded RNA-dependent protein kinase(PKR)-like ER kinase(PERK) activating transcription factor 6(ATF6) Liver diseases
原文传递
Homeostatic responses to amino acid insufficiency
18
作者 Tracy G.Anthony 《Animal Nutrition》 SCIE 2015年第3期135-137,共3页
This article provides a brief overview describing how two key signaling pathways, namely the integrated stress response and the mammalian target of rapamycin complex 1, work together to facilitate cellular adaptation ... This article provides a brief overview describing how two key signaling pathways, namely the integrated stress response and the mammalian target of rapamycin complex 1, work together to facilitate cellular adaptation to dietary amino acid insufficiency. A deeper understanding of these mechanisms is leading to identification of novel targets which aid in disease treatments, improve stress recovery and increase health span through slowed aging and enhanced metabolic fitness. 展开更多
关键词 MTOR GCN2 Integrated stress response ASPARAGINASE Eukaryotic initiation factor 2 activating transcription factor 4
原文传递
Integrative decomposition procedure and Kappa statistics set up ATF2 ion binding module in malignant pleural mesothelioma(MPM)
19
作者 Ying SUN Lin WANG Lei LIU 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2008年第4期381-387,共7页
Activating transcription factor 2(ATF2)is a member of the ATF/cyclic AMP-responsive element bind-ing protein family of transcription factors.However,the information concerning ATF2 ion-mediated DNA binding module and ... Activating transcription factor 2(ATF2)is a member of the ATF/cyclic AMP-responsive element bind-ing protein family of transcription factors.However,the information concerning ATF2 ion-mediated DNA binding module and function of ATF2 in malignant pleural mesothelioma(MPM)has never been addressed.In this study,by using GRNInfer and GVedit based on linear pro-gramming and a decomposition procedure,with integrated analysis of the function cluster using Kappa statistics and fuzzy heuristic clustering in MPM,we identified one ATF2 ion-mediated DNA binding module involved in invasive function including ATF2 inhibition to target genes FALZ,C20orf31,NME2,PLOD2,RNF10,and RNASEH1,upstream RNF10 and PLOD2 activation to ATF2,upstream RNASEH1 and FALZ inhibition to ATF2 from 40 MPM tumors and 5 normal pleural tissues.Remarkably,our results showed that the predominant effect of ATF2 occupancy is to suppress the activation of target genes on MPM.Importantly,the ATF2 ion-mediated DNA binding module reflects‘mutual’positive and negative feedback regulation mechanism of ATF2 with up-and down-stream genes.It may be useful for developing novel prognostic markers and therapeutic targets in MPM. 展开更多
关键词 significant function cluster inferring analysis activating transcription factor 2(ATF2) malignant pleural mesothelioma(MPM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部