Lime, which is a frequently used activating agent of fly ash (FA), has two main states: slaked lime and quick lime. We studied the effects of slaked lime and quick lime on activating FA, and discussed their kinetics. ...Lime, which is a frequently used activating agent of fly ash (FA), has two main states: slaked lime and quick lime. We studied the effects of slaked lime and quick lime on activating FA, and discussed their kinetics. The results show that slaked lime is more beneficial for activating FA than quick lime given the condition of equivalent CaO amount. The use of slaked lime has superiority in technology and economy on activating FA. Theoretical analysis revealed that the kinetic constant of the activation reaction using slaked lime is higher than using quick lime, credited to the better volume stability and fineness, and smaller water demand of slaked lime.展开更多
Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydroge...Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydrogen storage kinetics of as-milled alloys were investigated systematically. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. And the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter(DSC) connected with a H_2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. It is found that the increase of Ni content significantly improves the gaseous and electrochemical hydrogen storage kinetic performances of as-milled alloys. Furthermore, as ball milling time changes, the maximum of both high rate discharge ability(HRD) and the gaseous hydriding rate of as-milled alloys can be obtained. But the hydrogen desorption kinetics of alloys always increases with the extending of milling time. Moreover, the improved gaseous hydrogen storage kinetics of alloys are ascribed to a decrease in the hydrogen desorption activation energy caused by increasing Ni content and milling time.展开更多
The non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends was investigated by differential scanning calorimetry(DSC). The Mo equation was employed to analyze the non-isothermal crystallization da...The non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends was investigated by differential scanning calorimetry(DSC). The Mo equation was employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. The results show that the crystallization onset temperature(T onset) and crystallization peak temperature(T p) decrease with the increase of the content of reactive microgel, while ΔT(T onset–T p), the crystallization half-time(t1/2) and the crystallization enthalpy(ΔH c) increase. The required cooling rates of blends are higher than that of neat nylon6 in order to achieve the same relative crystallinity in a unit of time. The crystallization activation energies of the reactive microgel/nylon 6 blends are greater than those of the neat nylon 6. When the content of reactive microgel is 30%, the relative crystallinity(X t) reaches the maximum.展开更多
In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive s...In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)].展开更多
A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, phys...A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, physiology, biochemical analysis and phylogenetic characteristics, the isolate was identified as Diaphorobacter sp. PD-7. Biodegradation tests of phenol showed that the maximum phenol degradation occurred at the late phase of exponential growth stages, with 1400 mg·L^-1 phenol completely degraded within 85 h. Diaphorobacter sp. PD-7 accumulated a vast quantity of phenol hydroxylase in this physiological phase, ensuring that the cells quickly utilize phenol as a sole carbon and energy source. The kinetic behavior ofDiaphorobacter sp. PD-7 in batch cultures was investigated over a wide range of initial phenol concentrations (0-1400mg·L^-1) by using the Haldane model, which adequately describes the dynamic behavior of phenol biodegradation by strain Diaphombacter sp. PD-7. At initial phenol concentration of 1400mg· L^-l, batch experiments (0.25 L flask) of nitrogen removal under aerobic condition gave almost entirely removal of 120.69mg· L^- 1 ammonium nitrogen within 75 h, while nitrate nitrogen removal reached 91% within 65 h. Moreover, hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase were successfully expressed in the isolate.展开更多
Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel ce...Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell(BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam(PC) and urea-modified carbon foam(UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 m V lower than that of the PC, reaching-570 ±10 m V(vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 m W m-2, which is 566.2-fold higher than that from plain graphite anode(PG). The fuel cell containing the UC anode has the maximum power density(256.0 m W m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.展开更多
A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the ads...A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.展开更多
The reaction kinetics between diazide(4,4'-biphenyl dibenzyl azide) and different diynes(dipropargyl bisphenol A and 1,3-diethynylbenzene) were studied by means of differential scanning calorimetry(DSC) and nuc...The reaction kinetics between diazide(4,4'-biphenyl dibenzyl azide) and different diynes(dipropargyl bisphenol A and 1,3-diethynylbenzene) were studied by means of differential scanning calorimetry(DSC) and nuclear magnetic resonance spectroscopy(~1H-NMR).DSC was adopted to analyze the reactions under bulk polymerization condition,while ~1H-NMR for solution reaction polymerization was conducted.The apparent activation energies(E_α) calculated by Kissinger's method were 77.96,81.24 k J/mol,which were confirmed by Friedman's method,and 65.45,69.36 k J/mol by ~1H-NMR for dispropargyl bisphenol A/4,4'-biphenyl dibenzyl azide and 1,3-diethynylbenzene/4,4'-biphenyl dibenzyl azide,respectively.The polymerizations between the diazide and diynes were first-order reactions based on calculation from both DSC and ~1H-NMR.The results showed that the reaction between dipropargyl bisphenol A and 4,4'-biphenyl dibenzyl azide was easier than that between 1,3-diethynylbenzene and 4,4'-biphenyl dibenzyl azide,verifying that the reactivity of aliphatic alkyne was higher than that of aromatic alkyne.展开更多
PVC(polyvinyl chloride) was isolated from waste plastic before manufacturing RPF(refuse paper & plastic fuel), and the characteristics of manufactured RPF including properties, calorific value, pyrolysis, chlorin...PVC(polyvinyl chloride) was isolated from waste plastic before manufacturing RPF(refuse paper & plastic fuel), and the characteristics of manufactured RPF including properties, calorific value, pyrolysis, chlorine content and kinetics analysis were analyzed. Based on the result of TGA(Thermogravimetric analysis), the kinetics characteristics was analyzed by using Kissinger method and Ozawa method which are the most common methods for obtaining activation energy, and the experimental conditions of TGA were set as follows: in a nitrogen atmosphere, with gas flow rate of 20mL/min, heating rate of 5-50 ℃/min, and maximum temperature of 800 ℃. In conclusion, the activation energy showed a tendency to gradually increase by a rise of reaction rate. Although the activation energy with pyrolysis of RPF was irregularly scattered, it was shown that the activation energy was stabilized by co-pyrolysis of RPF and additives(rice bran and sawdust).展开更多
This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface ...This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface methodology technique was used to optimize the process conditions and they were found to be: 500 mg/L for H2S initial concentration, 540 min for contact time and 1 g for adsorbent mass. The impacts of three arrangement factors(calcination temperature of impregnated activated carbon(IAC), the calcium solution concentration and contact time of calcination) on the H2S removal efficiency and impregnated AC yield were investigated. Both responses IAC yield(IACY, %) and removal efficiency(RE, %) were maximized to optimize the IAC preparation conditions. The optimum preparation conditions for IACY and RE were found as follows: calcination temperature of IAC of 880 ℃, calcium solution concentration of 49.3% and calcination contact time of 57.6 min, which resulted in 35.8% of IACY and 98.2% RE. In addition, the equilibrium and kinetics of the process were investigated. The adsorbent was characterized using TGA, XRD, FTIR, SEM/EDX, and BET. The maximum monolayer adsorption capacity was found to be 543.47 mg/g. The results recommended that the composite of PKSAC and Ca O could be a useful material for H2S containing wastewater treatment.展开更多
Tungsten oxides(WO_(3))are widely recognized as multifunctional systems owing to the existence of rich polymorphs.These diverse phases exhibit distinct octahedra-tilting patterns,generating substantial tunnels that ar...Tungsten oxides(WO_(3))are widely recognized as multifunctional systems owing to the existence of rich polymorphs.These diverse phases exhibit distinct octahedra-tilting patterns,generating substantial tunnels that are ideally suited for iontronics.However,a quantitative comprehension regarding the impact of distinct phases on the kinetics of intercalated conducting ions remains lacking.Herein,we employ first-principles calculations to explore the spatial and orientational correlations of ion transport inγ-and h-WO_(3),shedding light on the relationship between diffusion barriers and the size of the conducting ions.Our findings reveal that different types and concentrations of alkali-metals induce distinct and continuous lattice distortions in WO_(3)polymorphs.Specifically,γ-WO_(3)is more appropriate to accommodate Li+ions,exhibiting a diffusion barrier and coefficient of 0.25 eV and 9.31×10^(-8)cm^(2)s^(-1),respectively.Conversely,h-WO_(3)features unidirectional and sizeable tunnels that facilitate the transport of K+ions with an even lower barrier and a high coefficient of 0.11 e V and 2.12×10^(-5)cm^(2)s^(-1),respectively.Furthermore,the introduction of alkali-metal into WO_(3)tunnels tends to introduce n-type conductivity by contributing s-electrons to the unoccupied W 5d states,resulting in enhanced conductivity and tunable electronic structures.These alkali metals in WO_(3)tunnels are prone to charge transfer,forming small polaronic states and modulating the light absorption in the visible and nearinfrared regions.These tunable electronic and optical properties,combined with the high diffusion coefficient,underscore the potential of WO_(3)in applications such as artificial synapses and chromogenic devices.展开更多
MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 ca...MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.展开更多
Coarsening behavior of γ' precipitates in the dendritic regions of a Ni 3 Al base alloy containing chromium,molybdenum,zirconium and boron was investigated.Annealing treatment was performed up to 50 h at 900,1000 an...Coarsening behavior of γ' precipitates in the dendritic regions of a Ni 3 Al base alloy containing chromium,molybdenum,zirconium and boron was investigated.Annealing treatment was performed up to 50 h at 900,1000 and 1100℃.The alloy was produced by vacuum-arc remelting technique.Results show that coarsening of the γ' precipitates in this complex alloy containing high volume fractions of γ' phase follows Lifshitz-Slyozov-Wagner(LSW) theory.Coarsening activation energy of the γ' precipitates was evaluated to be about 253.5 kJ.mol-1 which shows that the growth phenomenon is controlled by volume diffusion of aluminum.With an innovative approach,diffusion coefficient of the solute element(s) and the interfacial energy between γ' precipitates and γ'(matrix) were estimated at 900,1000 and 1100℃.Accordingly,the interfacial energies at 900,1000 and 1100℃ are 4.49±1.48,2.08±0.69 and 0.98±0.32 mJ.m-2,respectively.Also the diffusivities of solute element(s) at these temperatures are 3.41±1.08,30±9.5 and 145.15±45.85(10-15 m-2.s-1),respectively.展开更多
The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of S...The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of SPHC for 240 min under air condition, and the temperature range was from 500 to 900 ℃. Scanning electron microscope (SEM) was used to observe cross-sectional scale morphology and analyze composition distribution of oxide scales. The morphology of oxide scale was classical three-layer structure. Fe2 03 developed as whiskers at the outermost lay- er, and interlayer was perforated-plate Fe3 04 while innermost layer was pyramidal FeO. From the oxidation curves, the oxidation mass gain per unit area with time was of parabolic relation and oxidation rate slowed down. On the ba- sis of experimental data, the isothermal oxidation kinetics model was derived and oxidation activation energy of SPHC steel was 127. 416 kJ/mol calculated from kinetics data.展开更多
The synthesis of bioactive steroids is catalyzed by an array of enzymes of diverse properties and actions.In the present study,seasonal dynamics and kinetics of key steroidogenic enzymes,17α-hydroxylase(Cyp17a),3β-h...The synthesis of bioactive steroids is catalyzed by an array of enzymes of diverse properties and actions.In the present study,seasonal dynamics and kinetics of key steroidogenic enzymes,17α-hydroxylase(Cyp17a),3β-hydroxysteroid dehydrogenase(Hsd3b),20α-hydroxysteroid dehydrogenase(Hsd20a)and 20β-hydroxysteroid dehydrogenase(Hsd20b)were investigated in the female catfish Heteropneustes fossilis.Further,the effects of the estrogen metabolite 2-hydroxyestradiol-17β(2-OHE2)and human chorionic gonadotropin(hCG)on activities of the above enzymes,cytochrome P450 aromatase(Cyp19a1),and steroid products including testosterone and cortisol were determined.The enzymes under investigation showed significant seasonal variations across the annual ovarian cycle with low activity in the gonad resting phase.The enzymes Hsd3b and Cyp17a showed high activity during early oogenesis but the activities of Hsd20a and Hsd20b were higher towards late oogenesis in the spawning phase.Hsd3b and Cyp17a elicited high apparent Km values(low substrate affinity)and high apparent Vmax in the vitellogenic phase compared to the postvitellogenic phase.Hsd20a did not elicit any significant differences in the kinetic parameters between the two phases.Hsd20b showed high apparent Km values(low substrate affinity)and high Vmax in the postvitellogenic phase.The incubation of ovarian slices with 2-OHE2 for 24 h increased dose-dependently Hsd3b,Cyp17a,Hsd20a and Hsd20b activities,similar to hCG.The levels of the corresponding C21 steroid products,progesterone(P4),17α-hydroxyprogesterone(17-OHP4),17,20α-dihydroxy-4-pregnen-3-one(17,20α-DP)and 17,20β-dihydoxy-4-pregnen-3-one(17,20β-DP),and cortisol were elevated.However,2-OHE2 decreased significantly the C19 and C18 steroids,testosterone and E2 levels,and Cyp19a activity.The co-incubation with hCG and 2-OHE2 produced a synergistic effect on the enzyme activities except that of CYP19a.The co-incubation reversed the inhibitory effect of 2-OHE2.The data show that 2-OHE2 exerts a dual role on steroidogenesis,stimulating the C21 pathway and inhibiting the C19-C18 pathway,resulting in the steroidogenic shift.展开更多
The RAFM(reduced activation ferritic/martensitic)steels containing different tantalum contents(0wt.%,0.027wt.%,0.073wt.%)were designed and cast.Differential scanning calorimetry and optical microscopy were employe...The RAFM(reduced activation ferritic/martensitic)steels containing different tantalum contents(0wt.%,0.027wt.%,0.073wt.%)were designed and cast.Differential scanning calorimetry and optical microscopy were employed to explore the influence of tantalum content on the austenitic transformation of RAFM steels.The austenitic transformation kinetics was described by aphase-transformation model.The model,involving site saturation nucleation,diffusion-controlled growth and impingement correction,was established based on the classical Johnson-Mehl-Avrami-Kolmogorov model.The phase-transformation kinetics parameters,including D_0(pre-exponential factor for diffusion)and Q_d(activation energy for diffusion),were calculated by fitting the experimental data and the kinetic model.The results indicated that the average grain size is decreased with the increase of tantalum.The values of A_(c1) and A_(c3) (onset and finish temperature of austenitic transformation,respectively)are increased by increasing the tantalum content.The increase of tantalum caused the decrease of D_0.However,Q_d is increased with the increase of tantalum.In addition,as a carbides forming element,tantalum would reduce the carbon diffusion coefficient and slow down the austenitic transformation rate.展开更多
The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systemati...The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systematically investigated, The results indicate that the as-milled composites exhibit excellent hydrogen storage kinetic performances, and increasing Ni content significantly facilitates the improvement of the hydrogen storage kinetics properties of the composites. The gaseous and electrochemical hydrogen storage kinetics of the composites reaches a maximum value with the variation of milling time. Increasing Ni content and milling time both make the hydrogen desorption activation energy lower, which are responsible for the enhancement in the hydrogen storage kinetics properties of the composites. The diffusion coefficient of hydrogen atom and activation enthalpy of charge transfer on the surface of the as-milled composites were also calculated, which are considered to be the dominated factors for the electrochemical high rate discharge ability.展开更多
Perfluorooctane sulfonate(PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the ad...Perfluorooctane sulfonate(PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force(LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient βs.The big difference in the initial mass transfer coefficient βs,0, when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate.But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range.展开更多
Nanocrystalline and amorphous Nd Mg_(12^-)type Nd Mg_(11)Ni+ x wt% Ni(x=100, 200) hydrogen storage alloys were synthesized by mechanical milling. The effects of Ni content and milling time on hydrogen storage t...Nanocrystalline and amorphous Nd Mg_(12^-)type Nd Mg_(11)Ni+ x wt% Ni(x=100, 200) hydrogen storage alloys were synthesized by mechanical milling. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were systematically investigated. The gaseous hydrogen absorption and desorption properties were investigated by Sieverts apparatus and differential scanning calorimeter connected with a H_2 detector. Results show that increasing Ni content significantly improves hydrogen absorption and desorption kinetics of the alloys. Furthermore,varying milling time has an obvious effect on the hydrogen storage properties of the alloys. Hydrogen absorption saturation ratio(R^a_(10); a ratio of the hydrogen absorption capacity in 10 min to the saturated hydrogen absorption capacity) of the alloys obtains the maximum value with varying milling time. Hydrogen desorption ratio(R^d_(20), a ratio of the hydrogen desorption capacity in 20 min to the saturated hydrogen absorption capacity) of the alloys always increases with extending milling time. The improved hydrogen desorption kinetics of the alloys are considered to be ascribed to the decreased hydrogen desorption activation energy caused by increasing Ni content and milling time.展开更多
A novel method has been designed and exploited to determine the thermal junction potential difference(TJPD) between two acids or alkalies of the same composition but with different temperature. The absolute value of m...A novel method has been designed and exploited to determine the thermal junction potential difference(TJPD) between two acids or alkalies of the same composition but with different temperature. The absolute value of measured TJPD between two strong acids(or alkalies) maintained at different temperatures increases with increasing of the temperature difference between the two electrolytes over the range from 0 to 40 °C. In strong acids, the hot end always has the lower potential while in strong alkalies, the cold end has the lower potential. This is because the ions of fast diffusion rate contribute most to the TJPD. Our results demonstrate the importance of the correction for TJPD in deriving the kinetic parameters when studying the temperature effect on reaction kinetics.展开更多
基金Funded by Natural Science Foundation of China under the grant No. 50672137
文摘Lime, which is a frequently used activating agent of fly ash (FA), has two main states: slaked lime and quick lime. We studied the effects of slaked lime and quick lime on activating FA, and discussed their kinetics. The results show that slaked lime is more beneficial for activating FA than quick lime given the condition of equivalent CaO amount. The use of slaked lime has superiority in technology and economy on activating FA. Theoretical analysis revealed that the kinetic constant of the activation reaction using slaked lime is higher than using quick lime, credited to the better volume stability and fineness, and smaller water demand of slaked lime.
基金Funded by the National Natural Science Foundation of China(Nos.51471054,51761032,and 51371094)the Natural Science Foundation of Inner Mongolia,China(No.2015MS0558)
文摘Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydrogen storage kinetics of as-milled alloys were investigated systematically. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. And the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter(DSC) connected with a H_2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. It is found that the increase of Ni content significantly improves the gaseous and electrochemical hydrogen storage kinetic performances of as-milled alloys. Furthermore, as ball milling time changes, the maximum of both high rate discharge ability(HRD) and the gaseous hydriding rate of as-milled alloys can be obtained. But the hydrogen desorption kinetics of alloys always increases with the extending of milling time. Moreover, the improved gaseous hydrogen storage kinetics of alloys are ascribed to a decrease in the hydrogen desorption activation energy caused by increasing Ni content and milling time.
基金Supported by the Graduate Innovative Fund of Wuhan Institute of Technology(CX2013019)
文摘The non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends was investigated by differential scanning calorimetry(DSC). The Mo equation was employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. The results show that the crystallization onset temperature(T onset) and crystallization peak temperature(T p) decrease with the increase of the content of reactive microgel, while ΔT(T onset–T p), the crystallization half-time(t1/2) and the crystallization enthalpy(ΔH c) increase. The required cooling rates of blends are higher than that of neat nylon6 in order to achieve the same relative crystallinity in a unit of time. The crystallization activation energies of the reactive microgel/nylon 6 blends are greater than those of the neat nylon 6. When the content of reactive microgel is 30%, the relative crystallinity(X t) reaches the maximum.
基金Funded by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province(2014JZ012)
文摘In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)].
基金the National Natural Science Foundation of China(51378330 and51408396)the Natural Science Foundation of Shanxi Province(2013021023-3)
文摘A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, physiology, biochemical analysis and phylogenetic characteristics, the isolate was identified as Diaphorobacter sp. PD-7. Biodegradation tests of phenol showed that the maximum phenol degradation occurred at the late phase of exponential growth stages, with 1400 mg·L^-1 phenol completely degraded within 85 h. Diaphorobacter sp. PD-7 accumulated a vast quantity of phenol hydroxylase in this physiological phase, ensuring that the cells quickly utilize phenol as a sole carbon and energy source. The kinetic behavior ofDiaphorobacter sp. PD-7 in batch cultures was investigated over a wide range of initial phenol concentrations (0-1400mg·L^-1) by using the Haldane model, which adequately describes the dynamic behavior of phenol biodegradation by strain Diaphombacter sp. PD-7. At initial phenol concentration of 1400mg· L^-l, batch experiments (0.25 L flask) of nitrogen removal under aerobic condition gave almost entirely removal of 120.69mg· L^- 1 ammonium nitrogen within 75 h, while nitrate nitrogen removal reached 91% within 65 h. Moreover, hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase were successfully expressed in the isolate.
基金supported by the Key Project of Natural Science Fund of Shandong Province,China(ZR2011 BZ008)the Special Fund of Marine Renewable Energy from State Ocean Bureau,China(GHME2011GD 04)
文摘Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell(BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam(PC) and urea-modified carbon foam(UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 m V lower than that of the PC, reaching-570 ±10 m V(vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 m W m-2, which is 566.2-fold higher than that from plain graphite anode(PG). The fuel cell containing the UC anode has the maximum power density(256.0 m W m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.
基金Project(51008106)supported by the National Natural Science Foundation of China
文摘A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.
基金Funded by the Financial Support of Shanghai Leading Academic Discipline Project(No.B502)Fundamental Research for the Central University
文摘The reaction kinetics between diazide(4,4'-biphenyl dibenzyl azide) and different diynes(dipropargyl bisphenol A and 1,3-diethynylbenzene) were studied by means of differential scanning calorimetry(DSC) and nuclear magnetic resonance spectroscopy(~1H-NMR).DSC was adopted to analyze the reactions under bulk polymerization condition,while ~1H-NMR for solution reaction polymerization was conducted.The apparent activation energies(E_α) calculated by Kissinger's method were 77.96,81.24 k J/mol,which were confirmed by Friedman's method,and 65.45,69.36 k J/mol by ~1H-NMR for dispropargyl bisphenol A/4,4'-biphenyl dibenzyl azide and 1,3-diethynylbenzene/4,4'-biphenyl dibenzyl azide,respectively.The polymerizations between the diazide and diynes were first-order reactions based on calculation from both DSC and ~1H-NMR.The results showed that the reaction between dipropargyl bisphenol A and 4,4'-biphenyl dibenzyl azide was easier than that between 1,3-diethynylbenzene and 4,4'-biphenyl dibenzyl azide,verifying that the reactivity of aliphatic alkyne was higher than that of aromatic alkyne.
文摘PVC(polyvinyl chloride) was isolated from waste plastic before manufacturing RPF(refuse paper & plastic fuel), and the characteristics of manufactured RPF including properties, calorific value, pyrolysis, chlorine content and kinetics analysis were analyzed. Based on the result of TGA(Thermogravimetric analysis), the kinetics characteristics was analyzed by using Kissinger method and Ozawa method which are the most common methods for obtaining activation energy, and the experimental conditions of TGA were set as follows: in a nitrogen atmosphere, with gas flow rate of 20mL/min, heating rate of 5-50 ℃/min, and maximum temperature of 800 ℃. In conclusion, the activation energy showed a tendency to gradually increase by a rise of reaction rate. Although the activation energy with pyrolysis of RPF was irregularly scattered, it was shown that the activation energy was stabilized by co-pyrolysis of RPF and additives(rice bran and sawdust).
基金Funded by the Faculty of Chemical&Natural Resources Engineering,Universiti Malaysia Pahang through a Local Research Grant Scheme
文摘This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface methodology technique was used to optimize the process conditions and they were found to be: 500 mg/L for H2S initial concentration, 540 min for contact time and 1 g for adsorbent mass. The impacts of three arrangement factors(calcination temperature of impregnated activated carbon(IAC), the calcium solution concentration and contact time of calcination) on the H2S removal efficiency and impregnated AC yield were investigated. Both responses IAC yield(IACY, %) and removal efficiency(RE, %) were maximized to optimize the IAC preparation conditions. The optimum preparation conditions for IACY and RE were found as follows: calcination temperature of IAC of 880 ℃, calcium solution concentration of 49.3% and calcination contact time of 57.6 min, which resulted in 35.8% of IACY and 98.2% RE. In addition, the equilibrium and kinetics of the process were investigated. The adsorbent was characterized using TGA, XRD, FTIR, SEM/EDX, and BET. The maximum monolayer adsorption capacity was found to be 543.47 mg/g. The results recommended that the composite of PKSAC and Ca O could be a useful material for H2S containing wastewater treatment.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515120025)the Guangdong Province International Science and Technology Cooperation Research Project(Grant No.2023A0505050101)+3 种基金the National Natural Science Foundation of China(Grant No.22022309)the Science and Technology Development Fund from Macao SAR(Grant Nos.0120/2023/RIA2,0085/2023/ITP2,and FDCT-0163/2019/A3)the Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515010024)the University of Macao(Grant No.MYRG2020-00075-IAPME)。
文摘Tungsten oxides(WO_(3))are widely recognized as multifunctional systems owing to the existence of rich polymorphs.These diverse phases exhibit distinct octahedra-tilting patterns,generating substantial tunnels that are ideally suited for iontronics.However,a quantitative comprehension regarding the impact of distinct phases on the kinetics of intercalated conducting ions remains lacking.Herein,we employ first-principles calculations to explore the spatial and orientational correlations of ion transport inγ-and h-WO_(3),shedding light on the relationship between diffusion barriers and the size of the conducting ions.Our findings reveal that different types and concentrations of alkali-metals induce distinct and continuous lattice distortions in WO_(3)polymorphs.Specifically,γ-WO_(3)is more appropriate to accommodate Li+ions,exhibiting a diffusion barrier and coefficient of 0.25 eV and 9.31×10^(-8)cm^(2)s^(-1),respectively.Conversely,h-WO_(3)features unidirectional and sizeable tunnels that facilitate the transport of K+ions with an even lower barrier and a high coefficient of 0.11 e V and 2.12×10^(-5)cm^(2)s^(-1),respectively.Furthermore,the introduction of alkali-metal into WO_(3)tunnels tends to introduce n-type conductivity by contributing s-electrons to the unoccupied W 5d states,resulting in enhanced conductivity and tunable electronic structures.These alkali metals in WO_(3)tunnels are prone to charge transfer,forming small polaronic states and modulating the light absorption in the visible and nearinfrared regions.These tunable electronic and optical properties,combined with the high diffusion coefficient,underscore the potential of WO_(3)in applications such as artificial synapses and chromogenic devices.
基金Project supported by the National key research and development program(2016YFC0204901)the National Natural Science Foundation of China(21576207)the introduction of talent and technology cooperation plan of Tianjin(14RCGFGX00849)
文摘MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.
基金Advanced Material Research Center (AMRC) for providing the alloys, laboratory equipments and financial supports
文摘Coarsening behavior of γ' precipitates in the dendritic regions of a Ni 3 Al base alloy containing chromium,molybdenum,zirconium and boron was investigated.Annealing treatment was performed up to 50 h at 900,1000 and 1100℃.The alloy was produced by vacuum-arc remelting technique.Results show that coarsening of the γ' precipitates in this complex alloy containing high volume fractions of γ' phase follows Lifshitz-Slyozov-Wagner(LSW) theory.Coarsening activation energy of the γ' precipitates was evaluated to be about 253.5 kJ.mol-1 which shows that the growth phenomenon is controlled by volume diffusion of aluminum.With an innovative approach,diffusion coefficient of the solute element(s) and the interfacial energy between γ' precipitates and γ'(matrix) were estimated at 900,1000 and 1100℃.Accordingly,the interfacial energies at 900,1000 and 1100℃ are 4.49±1.48,2.08±0.69 and 0.98±0.32 mJ.m-2,respectively.Also the diffusivities of solute element(s) at these temperatures are 3.41±1.08,30±9.5 and 145.15±45.85(10-15 m-2.s-1),respectively.
基金Sponsored by National Natural Science Foundation of China(51204047)National Key Technology Research and Development Program in 12th Five-year Plan of China(2011BAE13B04)The Fundamental Research Funds for the Central Universities of China(N100307006)
文摘The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of SPHC for 240 min under air condition, and the temperature range was from 500 to 900 ℃. Scanning electron microscope (SEM) was used to observe cross-sectional scale morphology and analyze composition distribution of oxide scales. The morphology of oxide scale was classical three-layer structure. Fe2 03 developed as whiskers at the outermost lay- er, and interlayer was perforated-plate Fe3 04 while innermost layer was pyramidal FeO. From the oxidation curves, the oxidation mass gain per unit area with time was of parabolic relation and oxidation rate slowed down. On the ba- sis of experimental data, the isothermal oxidation kinetics model was derived and oxidation activation energy of SPHC steel was 127. 416 kJ/mol calculated from kinetics data.
基金grant No.SP/SO/C-13/2001)of Department of Science&Technology,New Delhi to KPJ,which is gratefully acknowledged.
文摘The synthesis of bioactive steroids is catalyzed by an array of enzymes of diverse properties and actions.In the present study,seasonal dynamics and kinetics of key steroidogenic enzymes,17α-hydroxylase(Cyp17a),3β-hydroxysteroid dehydrogenase(Hsd3b),20α-hydroxysteroid dehydrogenase(Hsd20a)and 20β-hydroxysteroid dehydrogenase(Hsd20b)were investigated in the female catfish Heteropneustes fossilis.Further,the effects of the estrogen metabolite 2-hydroxyestradiol-17β(2-OHE2)and human chorionic gonadotropin(hCG)on activities of the above enzymes,cytochrome P450 aromatase(Cyp19a1),and steroid products including testosterone and cortisol were determined.The enzymes under investigation showed significant seasonal variations across the annual ovarian cycle with low activity in the gonad resting phase.The enzymes Hsd3b and Cyp17a showed high activity during early oogenesis but the activities of Hsd20a and Hsd20b were higher towards late oogenesis in the spawning phase.Hsd3b and Cyp17a elicited high apparent Km values(low substrate affinity)and high apparent Vmax in the vitellogenic phase compared to the postvitellogenic phase.Hsd20a did not elicit any significant differences in the kinetic parameters between the two phases.Hsd20b showed high apparent Km values(low substrate affinity)and high Vmax in the postvitellogenic phase.The incubation of ovarian slices with 2-OHE2 for 24 h increased dose-dependently Hsd3b,Cyp17a,Hsd20a and Hsd20b activities,similar to hCG.The levels of the corresponding C21 steroid products,progesterone(P4),17α-hydroxyprogesterone(17-OHP4),17,20α-dihydroxy-4-pregnen-3-one(17,20α-DP)and 17,20β-dihydoxy-4-pregnen-3-one(17,20β-DP),and cortisol were elevated.However,2-OHE2 decreased significantly the C19 and C18 steroids,testosterone and E2 levels,and Cyp19a activity.The co-incubation with hCG and 2-OHE2 produced a synergistic effect on the enzyme activities except that of CYP19a.The co-incubation reversed the inhibitory effect of 2-OHE2.The data show that 2-OHE2 exerts a dual role on steroidogenesis,stimulating the C21 pathway and inhibiting the C19-C18 pathway,resulting in the steroidogenic shift.
基金financially sponsored by the China National Funds for Distinguished Young Scientists (Granted No.51325401)the National Natural Science Foundation of China(Granted No.51501126)the National Magnetic Confinement Fusion Energy Research Program(Granted No.2015GB119001)
文摘The RAFM(reduced activation ferritic/martensitic)steels containing different tantalum contents(0wt.%,0.027wt.%,0.073wt.%)were designed and cast.Differential scanning calorimetry and optical microscopy were employed to explore the influence of tantalum content on the austenitic transformation of RAFM steels.The austenitic transformation kinetics was described by aphase-transformation model.The model,involving site saturation nucleation,diffusion-controlled growth and impingement correction,was established based on the classical Johnson-Mehl-Avrami-Kolmogorov model.The phase-transformation kinetics parameters,including D_0(pre-exponential factor for diffusion)and Q_d(activation energy for diffusion),were calculated by fitting the experimental data and the kinetic model.The results indicated that the average grain size is decreased with the increase of tantalum.The values of A_(c1) and A_(c3) (onset and finish temperature of austenitic transformation,respectively)are increased by increasing the tantalum content.The increase of tantalum caused the decrease of D_0.However,Q_d is increased with the increase of tantalum.In addition,as a carbides forming element,tantalum would reduce the carbon diffusion coefficient and slow down the austenitic transformation rate.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51161015 and 51371094)
文摘The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systematically investigated, The results indicate that the as-milled composites exhibit excellent hydrogen storage kinetic performances, and increasing Ni content significantly facilitates the improvement of the hydrogen storage kinetics properties of the composites. The gaseous and electrochemical hydrogen storage kinetics of the composites reaches a maximum value with the variation of milling time. Increasing Ni content and milling time both make the hydrogen desorption activation energy lower, which are responsible for the enhancement in the hydrogen storage kinetics properties of the composites. The diffusion coefficient of hydrogen atom and activation enthalpy of charge transfer on the surface of the as-milled composites were also calculated, which are considered to be the dominated factors for the electrochemical high rate discharge ability.
基金the funding of the present study by the German Federation of Industrial Research Associations(AiF)(FKZ VP 2470101RH9)
文摘Perfluorooctane sulfonate(PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force(LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient βs.The big difference in the initial mass transfer coefficient βs,0, when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate.But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range.
基金financially supported by the National Natural Science Foundation of China(Nos.51371094 and 51471054)
文摘Nanocrystalline and amorphous Nd Mg_(12^-)type Nd Mg_(11)Ni+ x wt% Ni(x=100, 200) hydrogen storage alloys were synthesized by mechanical milling. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were systematically investigated. The gaseous hydrogen absorption and desorption properties were investigated by Sieverts apparatus and differential scanning calorimeter connected with a H_2 detector. Results show that increasing Ni content significantly improves hydrogen absorption and desorption kinetics of the alloys. Furthermore,varying milling time has an obvious effect on the hydrogen storage properties of the alloys. Hydrogen absorption saturation ratio(R^a_(10); a ratio of the hydrogen absorption capacity in 10 min to the saturated hydrogen absorption capacity) of the alloys obtains the maximum value with varying milling time. Hydrogen desorption ratio(R^d_(20), a ratio of the hydrogen desorption capacity in 20 min to the saturated hydrogen absorption capacity) of the alloys always increases with extending milling time. The improved hydrogen desorption kinetics of the alloys are considered to be ascribed to the decreased hydrogen desorption activation energy caused by increasing Ni content and milling time.
基金supported by the National Basic Research Program of China (2015CB932301)National Natural Science Foundation of China (21273215, 91545124)
文摘A novel method has been designed and exploited to determine the thermal junction potential difference(TJPD) between two acids or alkalies of the same composition but with different temperature. The absolute value of measured TJPD between two strong acids(or alkalies) maintained at different temperatures increases with increasing of the temperature difference between the two electrolytes over the range from 0 to 40 °C. In strong acids, the hot end always has the lower potential while in strong alkalies, the cold end has the lower potential. This is because the ions of fast diffusion rate contribute most to the TJPD. Our results demonstrate the importance of the correction for TJPD in deriving the kinetic parameters when studying the temperature effect on reaction kinetics.