TIG welding and EB welding Jbr aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is fo...TIG welding and EB welding Jbr aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneoudy. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.展开更多
AISI 304 stainless steel plates were welded with activated flux tungsten inert gas(A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 s...AISI 304 stainless steel plates were welded with activated flux tungsten inert gas(A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 stainless steel plate, weld joint of full penetration and one-side welding with good weld appearance can be obtained in a single pass without groove preparation by utilizing A-TIG welding. Moreover, activated flux powders do not cause significant effect on the microstructure of TIG weld and the mechanical properties of A-TIG weld joints are also superior to those of C-TIG(conventional TIG) welding.展开更多
This work mainly articulated the effects of nozzle structure on arc characteristics in gas pool coupled activating TIG (GPCA-TIG) welding process by using Fluent Software. Different models were set up to adapt the d...This work mainly articulated the effects of nozzle structure on arc characteristics in gas pool coupled activating TIG (GPCA-TIG) welding process by using Fluent Software. Different models were set up to adapt the different torch structure during computer progress. The specific configuration of the welding torch made the gas flow in outer gas passage constrained. The nozzle structure has great influence on outer gas distribution because of the changing of coupling region between the outer active gas and molten pool surface. When the coupling degree is reduced or the outer gas passage become smaller, the oxygen in outer gas penetrates into the arc plasma and spreads to the arc region more easily. Owing to its cooling effects, the morphology of arc is contracted, and the arc temperature is increased. When the inner wall and the outer wall of outer gas passage are not parallel, the wide top and narrow bottom nozzle shape can bring more oxygen into the arc plasma, the arc is contracted and the peak temperature of arc rises a little more comparing to the narrow top and wide bottom one.展开更多
The cathode spots are a common phenomenon in the TIG(tungsten inert gas)welding process.However,it is rarely observed in the activating TIG welding process.This research is mainly focused on the effect of activating f...The cathode spots are a common phenomenon in the TIG(tungsten inert gas)welding process.However,it is rarely observed in the activating TIG welding process.This research is mainly focused on the effect of activating flux on cathode spots in the activating TIG welding.The characteristics and behaviors of cathode spots were investigated in activating TIG welding by the high-speed camera and the spectrograph.Three kinds of oxide(TiO_(2),SiO_(2),MnO_(2))and two halide(MnCl_(2),CaF_(2))activating fluxes are used in the activating TIG welding process.The results show that differ from the TIG welding,the oxide activating flux increases the number of cathode spots and decreases the velocity.The effect is the opposite for the halide activating flux.Moreover,the number of spots no longer varies with the current except TiO2 activating flux.As the temperature of the weld pool surface increases the spot moves away from the center.But this rule is not valid when silica and manganese compounds activating fluxes are used.The variation of cathode spots is caused by the oxide film reformed and the distribution of weld slag.The formation mechanism of cathode spots might be the impact of ions on the cathode surface and the strong electric field formed near the cathode surface.展开更多
The dissimilar joints of AZ61 and ZK60 magnesium alloys were obtained by tungsten inert gas arc(TIG)welding and activating tungsten inert gas arc(A-TIG)welding processes.Microstructure characterization shows that,the ...The dissimilar joints of AZ61 and ZK60 magnesium alloys were obtained by tungsten inert gas arc(TIG)welding and activating tungsten inert gas arc(A-TIG)welding processes.Microstructure characterization shows that,the fineα-Mg equiaxed dendrite crystals contained Mg17Al12 and MgZn2 particles in the fusion zone.The average size of theα-Mg grains in the fusion zone was refined to 19μm at welding current of 80 A,which resulted in the largest tensile strength of 207 MPa.The tensile strength and the width of the beam of the A-TIG welded AZ61/ZK60 joints showed strong dependence on the amount of TiO2.However,the inhomogeneity of the heat-affected zone near different base metals presented no significant effect on the mechanical properties of the welded joint.展开更多
Metal active gas ( MAG) welding has been carried out on microalloy controlled rolling steel (S355J2W) by two kinds of welding wires with different Ti content. The mechanical tests have been carried out on the weld...Metal active gas ( MAG) welding has been carried out on microalloy controlled rolling steel (S355J2W) by two kinds of welding wires with different Ti content. The mechanical tests have been carried out on the welded joint. The optical microscope and scanning electron microscope (SEM) observations have been performed to investigate the effect of microalloy element Ti on the microstructure of weld metal and impact fracture, respectively. The microstrueture of the MAG multipass weld metal includes the columnar grain zone (CGZ) consisting of primary ferrite ( PF), ferrite with second phase (FS) and acicularferrite (AF), and the fine grain zone (FGZ) consisting of polygonal ferrite due to the heat effect of subsequent welding pass. It has been found that the small amount of Ti can significantly increase the impact energy of the weld metal at low temperature and weakly affect tensile strength of welded joint. By adding small amount of Ti, the inclusions have changed from Mn-Si-O inclusions to Ti-bearing inclusions, which causes the Mn-depleted zones(MDZs) much larger and is beneficial to the impact energy by promoting the AF formation, refining the PF and pinning the austenite grain boundary during the subsequent transformation process.展开更多
The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investiga...The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investigated.It wasfound that compared with those of activating TIG(A-TIG),and obvious refinement ofα-Mg grains was achieved and the finestα-Mggrains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating.In addition,thepenetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux.However,the welded jointswith TiO2+GNPs flux coating showed better mechanical properties(i.e.,ultimate tensile strength and microhardness)than those withTiO2+SiCp flux coating.Moreover,the generation of necking only occurred in the welded joints with TiO2+GNPs flux.展开更多
There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipmen...There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.展开更多
Advanced A-TIG method was conducted to increase the weld penetration and compared with the conventional TIG welding process.A two-pipeline setup was designed to apply Ar + CO_2 mixed gas as the outer layer,while pure...Advanced A-TIG method was conducted to increase the weld penetration and compared with the conventional TIG welding process.A two-pipeline setup was designed to apply Ar + CO_2 mixed gas as the outer layer,while pure argon was applied as the inner layer to prevent any consumption of the tungsten electrode.The results indicate that the presence of active gas in the molten pool led to the change in the temperature coefficient of surface tension so that the Marangoni convection turns inward and forms a deep weld zone.The increase in gas flow rate causes a decrease in the weld efficiency which is attributed to the increase in oxygen content in the weld pool and the formation o f a thicker oxide layer on the weld surface.Moreover,the stir and the temperature fluctuation,led by double shielding gas,create more homogeneous nucleation sites in the molten pool so that a fine grain micros true ture was obtained.展开更多
文摘TIG welding and EB welding Jbr aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneoudy. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.
基金Project(2011DFB70130) supported by International Scientific and Technological Cooperation of Ministry of Science and Technology of ChinaProject(2012B050100015) supported by Science and Technology Planning Program of Guangdong Province,China
文摘AISI 304 stainless steel plates were welded with activated flux tungsten inert gas(A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 stainless steel plate, weld joint of full penetration and one-side welding with good weld appearance can be obtained in a single pass without groove preparation by utilizing A-TIG welding. Moreover, activated flux powders do not cause significant effect on the microstructure of TIG weld and the mechanical properties of A-TIG weld joints are also superior to those of C-TIG(conventional TIG) welding.
基金supported by National Natural Science Foundation of China(Grant No.51265029)
文摘This work mainly articulated the effects of nozzle structure on arc characteristics in gas pool coupled activating TIG (GPCA-TIG) welding process by using Fluent Software. Different models were set up to adapt the different torch structure during computer progress. The specific configuration of the welding torch made the gas flow in outer gas passage constrained. The nozzle structure has great influence on outer gas distribution because of the changing of coupling region between the outer active gas and molten pool surface. When the coupling degree is reduced or the outer gas passage become smaller, the oxygen in outer gas penetrates into the arc plasma and spreads to the arc region more easily. Owing to its cooling effects, the morphology of arc is contracted, and the arc temperature is increased. When the inner wall and the outer wall of outer gas passage are not parallel, the wide top and narrow bottom nozzle shape can bring more oxygen into the arc plasma, the arc is contracted and the peak temperature of arc rises a little more comparing to the narrow top and wide bottom one.
基金supported by the National Natural Science Foundation of China(Grant No.51965036).
文摘The cathode spots are a common phenomenon in the TIG(tungsten inert gas)welding process.However,it is rarely observed in the activating TIG welding process.This research is mainly focused on the effect of activating flux on cathode spots in the activating TIG welding.The characteristics and behaviors of cathode spots were investigated in activating TIG welding by the high-speed camera and the spectrograph.Three kinds of oxide(TiO_(2),SiO_(2),MnO_(2))and two halide(MnCl_(2),CaF_(2))activating fluxes are used in the activating TIG welding process.The results show that differ from the TIG welding,the oxide activating flux increases the number of cathode spots and decreases the velocity.The effect is the opposite for the halide activating flux.Moreover,the number of spots no longer varies with the current except TiO2 activating flux.As the temperature of the weld pool surface increases the spot moves away from the center.But this rule is not valid when silica and manganese compounds activating fluxes are used.The variation of cathode spots is caused by the oxide film reformed and the distribution of weld slag.The formation mechanism of cathode spots might be the impact of ions on the cathode surface and the strong electric field formed near the cathode surface.
基金Project(51771160)supported by the National Natural Science Foundation of ChinaProject(2018JJ4048)supported by the Provincial and Municipal Joint Fund for Natural Science of Hunan Province,China
文摘The dissimilar joints of AZ61 and ZK60 magnesium alloys were obtained by tungsten inert gas arc(TIG)welding and activating tungsten inert gas arc(A-TIG)welding processes.Microstructure characterization shows that,the fineα-Mg equiaxed dendrite crystals contained Mg17Al12 and MgZn2 particles in the fusion zone.The average size of theα-Mg grains in the fusion zone was refined to 19μm at welding current of 80 A,which resulted in the largest tensile strength of 207 MPa.The tensile strength and the width of the beam of the A-TIG welded AZ61/ZK60 joints showed strong dependence on the amount of TiO2.However,the inhomogeneity of the heat-affected zone near different base metals presented no significant effect on the mechanical properties of the welded joint.
文摘Metal active gas ( MAG) welding has been carried out on microalloy controlled rolling steel (S355J2W) by two kinds of welding wires with different Ti content. The mechanical tests have been carried out on the welded joint. The optical microscope and scanning electron microscope (SEM) observations have been performed to investigate the effect of microalloy element Ti on the microstructure of weld metal and impact fracture, respectively. The microstrueture of the MAG multipass weld metal includes the columnar grain zone (CGZ) consisting of primary ferrite ( PF), ferrite with second phase (FS) and acicularferrite (AF), and the fine grain zone (FGZ) consisting of polygonal ferrite due to the heat effect of subsequent welding pass. It has been found that the small amount of Ti can significantly increase the impact energy of the weld metal at low temperature and weakly affect tensile strength of welded joint. By adding small amount of Ti, the inclusions have changed from Mn-Si-O inclusions to Ti-bearing inclusions, which causes the Mn-depleted zones(MDZs) much larger and is beneficial to the impact energy by promoting the AF formation, refining the PF and pinning the austenite grain boundary during the subsequent transformation process.
基金Project(51375511) supported by the National Natural Science Foundation of ChinaProject(cstc2016jcyj A0167) supported by the Research Program of Basic Research and Frontier Technology of Chongqing of China+1 种基金Project(SF201602) supported by the Science and Technology Project in the Field of Social Development of Shapingba District of Chongqing of ChinaProject(XJ201608) supported by the Key Industry Technology Innovation Funds of Science and Technology Development Board of Xiangcheng District of Suzhou of China
文摘The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investigated.It wasfound that compared with those of activating TIG(A-TIG),and obvious refinement ofα-Mg grains was achieved and the finestα-Mggrains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating.In addition,thepenetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux.However,the welded jointswith TiO2+GNPs flux coating showed better mechanical properties(i.e.,ultimate tensile strength and microhardness)than those withTiO2+SiCp flux coating.Moreover,the generation of necking only occurred in the welded joints with TiO2+GNPs flux.
文摘There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.
文摘Advanced A-TIG method was conducted to increase the weld penetration and compared with the conventional TIG welding process.A two-pipeline setup was designed to apply Ar + CO_2 mixed gas as the outer layer,while pure argon was applied as the inner layer to prevent any consumption of the tungsten electrode.The results indicate that the presence of active gas in the molten pool led to the change in the temperature coefficient of surface tension so that the Marangoni convection turns inward and forms a deep weld zone.The increase in gas flow rate causes a decrease in the weld efficiency which is attributed to the increase in oxygen content in the weld pool and the formation o f a thicker oxide layer on the weld surface.Moreover,the stir and the temperature fluctuation,led by double shielding gas,create more homogeneous nucleation sites in the molten pool so that a fine grain micros true ture was obtained.