The title compounds were prepared by the enzymatic resolution of the corresponding N-acetylated DL-amino acids methyl esters, which were obtained from t-butyl chloride via an 8-step synthesis.
Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subseq...Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subsequently conducted under greenhouse conditions to further characterize APase activity and its isoform expression induced by P starvation. Results from the field experiment showed that there was a great genotypic variation for leaf APase activity among the tested soybean genotypes from different origins, and APase activity in many of the tested genotypes (about 60%) was generally increased in the treatment without P fertilizer addition. Results from the nutrient solution culture experiment showed that APase activity in all the eight tested genotypes was generally enhanced by P starvation. Six isoforms of APases were detected in isoelectric focusing gels with samples from both young and old leaves. The activity of all the six isoforms was increased by P starvation, but no new APase isoform was induced. Our results suggest that leaf APase activity could serve as an enzymatic indicator of P starvation for soybean; the increase in leaf APase activity under low P stress was mainly caused by the increase in the activity of existing isoforms but not by the induction of new isoforms.展开更多
The use of H2SO4‐,HCl‐,H3PO4‐,and CH3COOH‐activated montmorillonite(Mt)and WOx/H3PO4‐activated Mt as catalysts for the gas‐phase dehydration of glycerol was investigated.The WOx/H3PO4‐activated Mt catalysts wer...The use of H2SO4‐,HCl‐,H3PO4‐,and CH3COOH‐activated montmorillonite(Mt)and WOx/H3PO4‐activated Mt as catalysts for the gas‐phase dehydration of glycerol was investigated.The WOx/H3PO4‐activated Mt catalysts were prepared by an impregnation method using H3PO4‐activated Mt(Mt‐P)as the support.The catalysts were characterized using powder X‐ray diffraction,Fourier‐transform infrared spectroscopy,N2adsorption‐desorption,diffuse reflectance ultraviolet‐visible spectroscopy,temperature‐programmed desorption of NH3,and thermogravimetric analysis.The acid activation of Mt and WOx loaded on Mt‐P affected the strength and number of acid sites arising from H+exchange,the leaching of octahedral Al3+cations from Mt octahedral sheets,and the types of WOx(2.7≤x≤3)species(i.e.,isolated WO4/WO6‐containing clusters,two‐dimensional[WO6]polytungstates,or three‐dimensional WO3crystals).The strong acid sites were weakened,and the weak and medium acid sites were strengthened when the W loading on Mt‐P was12wt%(12%W/Mt‐P).The12%W/Mt‐P catalyst showed the highest catalytic activity.It gave a glycerol conversion of89.6%and an acrolein selectivity of81.8%at320°C.Coke deposition on the surface of the catalyst led to deactivation.展开更多
This paper systematically studies the reaction mechanisms of formic acid catalyzed by transition metal oxide MoO. Three different reaction pathways of Routes I, Ⅱ and Ⅲ were found through studying the reaction mecha...This paper systematically studies the reaction mechanisms of formic acid catalyzed by transition metal oxide MoO. Three different reaction pathways of Routes I, Ⅱ and Ⅲ were found through studying the reaction mechanism of transition metal oxide MoO catalyzing the formic acid. The transition metal oxide MoO interacts with the C=O double bond to form chiral chain compounds(Routes I and Ⅱ) and metallic compound MoOH2(Route Ⅲ). In this paper, we have studied the mechanisms of two addition reaction pathways and hydrogen abstraction reaction pathway. Routes I and Ⅱ are both addition reactions, and their products are two different chiral compounds MoO3CH2, which are enantiomeric to each other. In Route Ⅲ, metal compounds MoOH2 and CO2 are obtained from the hydrogen abstraction reaction. Among them, the hydrogen abstraction reaction occurring in Route Ⅲ is more likely to occur than the others. By comparing the results of previous studies on the reaction of MxOy-+ ROH(M= Mo,W; R = Me, Et), we found that the hydrogen abstraction mechanism is completely different from the mechanism of oxygen-containing organic compound catalyzed by MxOy.展开更多
A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the ads...A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.展开更多
With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared...With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared by the one-step activation method, with sunflower straw (SS) used as the raw material and H3PO4 used as the activator. Four types of SSAC were prepared with impregnation ratios (weight of SS to weight of H3PO4) of 1:1, 1:2, 1:3, and 1:5, corresponding to SSAC1, SSAC2, SSAC3, and SSAC4, respectively. The adsorption process of acid fuchsin (AF) in water using the four types of SSAC was studied. The results showed that the impregnation ratio significantly affected the structure of the materials. The increase in the impregnation ratio increased the specific surface area and pore volume of SSAC and improved the adsorption capacity of AF. However, an impregnation ratio that was too large led to a decrease in specific surface area. SSAC3, with an impregnation ratio of 1:3, had the largest specific surface area (1 794.01 m2/g), and SSAC4, with an impregnation ratio of 1:5, exhibited the smallest microporosity (0.052 7 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of AF using the four types of SSAC agreed with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable to describe SSAC3 and SSAC4, and the Freundlich isotherm model was appropriate to describe SSAC1 and SSAC2. The result of thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200-mg/L AF with a maximum adsorption capacity of 2 763.36 mg/g, the highest among the four types of SSAC. This study showed that SAAC prepared by the H3PO4-based one-step activation method is a green and efficient carbon material and has significant application potential for the treatment of dye-containing wastewater.展开更多
The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca^2+-dependent acid phosphatase activity...The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca^2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3-4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly in)ected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca^2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca^2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.展开更多
We studied the influence of seed priming with beta-amino butyric acid(BABA) on the growth, physiological and biochemical parameters of seedlings with varied abiotic stress tolerance, which were raised and grown unde...We studied the influence of seed priming with beta-amino butyric acid(BABA) on the growth, physiological and biochemical parameters of seedlings with varied abiotic stress tolerance, which were raised and grown under unstressed and stressed(NaCl/PEG-6000) conditions. Under stressed conditions, the growth of rice seedlings was less when compared to control plants. After BABA priming, the seedling growth increased both under unstressed and stressed conditions as compared to the respective controls. BABA priming of rice seeds caused increase in the photosynthetic pigment content of the leaves, modified the chlorophyll a fluorescence related parameters and also enhanced the photosystem activities of seedlings when compared to their respective non-primed controls. BABA priming also caused increased mitochondrial activities of the rice seedlings. Moreover, BABA priming significantly reduced malondialdehyde content in the seedlings and also resulted in accumulation of proline especially in the NaCl tolerant variety Vyttila 6. BABA seed priming also enhanced the activity of nitrate reductase enzyme and activities of antioxidant enzymes like guaiacol peroxidase and superoxide dismutase. The presence of BABA was detected by high performance thin layer chromatography analysis in the rice seeds whereas in the seedlings it was not detected. Thus, it can be inferred that the seed priming effect of BABA mainly occurred within the seeds, which was further carried to the seedlings. It is concluded that BABA priming of seeds improved the drought and salinity stress tolerance of all the three rice varieties and it was significantly evident in the drought tolerant variety Vaisakh and NaCl tolerant variety Vyttila 6, when compared to the stress sensitive variety Neeraja.展开更多
The title compound(C(37)H(48)BrNO5, 6) was synthesized from ursolic acid and its crystal structure was determined by single-crystal X-ray diffraction analysis. The compound is of orthorhombic system, space group...The title compound(C(37)H(48)BrNO5, 6) was synthesized from ursolic acid and its crystal structure was determined by single-crystal X-ray diffraction analysis. The compound is of orthorhombic system, space group P212121 with a = 16.846(3), b = 18.844(4), c = 11.262(2)A, Z =4, V = 3575.1(13) A^3, Mr = 666.67, Dc = 1.239 Mg/m^3, S = 1.002, μ = 1.190 mm^-1, F(000) = 1408,the final R = 0.0831 and wR = 0.1459 for 2286 observed reflections(I 〉 2σ(I)). The crystal structure is stabilized by two intermolecular hydrogen bonds(N–H(0A)···O(2) and O(1)–H(1A)···O(3)). In the preliminary antitumor assay, the title compound 6 exhibits potent cytotoxic activity against Hep G2 and SMMC-7721 cells with IC50 values of 1.64 ± 0.21 and 1.22 ± 0.13 μM, respectively.展开更多
The β-carboxylic group plays an important role in the peptide formation,esterification and the ester exchange at the phosphoryl group of N-phosphorylated aspartic acid.
TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal...TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal analysis, Raman and FTIR measurements. Their acid-catalytic activities were evaluated using the cyclization reaction of pseudoionone. It was found that the obtained materials possess well-ordered mesostructure, and the grafted TiO2 components were in highly dispersed amorphous form. T/MCM41 without sulfation contained only Lewis acid sites, while Brφnsted and Lewis acidities were remarkably improved for the sulfated materials ST/MCM41 and d-ST/MCM41. T/MCM-41 was not active for the cyclization reaction of pseudoionone, but ST/MCM-41 and d-ST/MCM-41 possessed favorable catalytic activities. The catalytic performance of ST/MCM-41 was comparable with that of the commercial solid acid catalyst of Amberlyst-15, and better than that of d-ST/MCM-41, although the latter underwent a second TiO2 grafting process and accordingly had higher Ti and S content. The specific surface structure of Si-O-Ti-O-S=O in ST/MCM-41 and the bilateral induction effect of Si and S=O on Si-O-Ti bonds were speculated to account for its higher acid catalytic activity.展开更多
The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures includ...The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures included benzene/toluene, toluene/xylene, benzene/isopropylbenzene, ethyl acetate/toluene and benzene/ethyl acetate. Experimental results show that various ACF-Ps, as with ACF-W, can remove both vapors in binary vapor mixtures with over 99% of removal efficiency before the breakthrough point of the more weakly adsorbed vapor. In dynamic competitive adsorption, the more weakly adsorbed vapor not only penetrates early, but also will be displaced and desorbed consequently by stronger adsorbate and therefore produces a rolling up in the breakthrough curve. The ACF-Ps prepared at different temperatures have somewhat different adsorption selectivity. The feed concentration ratio of vapors, the length/diameter ratio and the thick of bed have effect on competitive adsorption. The competitive adsorption ability of a vapor is mainly related to its boiling point. Usually, the higher the boiling point, the stronger the vapor adsorbed on ACF-P.展开更多
Systemic acquired resistance (SAR), known as the broad-spectrum, inducible plant immunity, is a defense response triggered by pathogen infection. The response starts from the recognition of plant resistance (R) with t...Systemic acquired resistance (SAR), known as the broad-spectrum, inducible plant immunity, is a defense response triggered by pathogen infection. The response starts from the recognition of plant resistance (R) with the corresponding avirulence (avr) gene from the pathogen. There are some genes for convergence of signals downstream of different R/avr interacting partners into a single signaling pathway. Salicylic acid (SA) is required for the induction of SAR and involved in transducing the signal in target tissues. The SA signal is transduced through NPR1, a nuclear-localized protein that interacts with transcription factors that are involved in regulating SA-mediated gene expression. Some chemicals that mimic natural signaling compounds can also activate SAR. The application of biochemical activators to agriculture for plant protection is a novel idea for developing green chemical pesticide.展开更多
Coating of gold nanoclusters with peptides is an important targeting method in biomedical applications.However, their synthetic method highly influences their targeting ability. Current methods often use harsh reagent...Coating of gold nanoclusters with peptides is an important targeting method in biomedical applications.However, their synthetic method highly influences their targeting ability. Current methods often use harsh reagents and organic solvents to control morphology, which are not preferred for biomedical applications. Recently, several peptides with specific amino acid sequences have successfully been used to reduce Au ions and synthesize biocompatible peptide-covered gold particles in situ.However, the molecular mechanism of peptide-assisted nanocluster formation is yet unclear. Thus, reactive abilities of different amino acids should be studied to improve design of peptides with predetermined amino acid content and consequently, synthesize gold nanoclusters with improved performance. In this theoretical study, we have approximated the reactive abilities of 20 natural amino acids in their neutral state using density functional theory calculations, such as Fukui indices and HOMO/LUMO composition analysis. We have found that the top reducing agents are tryptophan, histidine, and tyrosine, and thestrongest binding can be expected from methionine and cysteine. Further study of the exact reactive sites in these high reactive amino acids provided the deep insight for the peptide design route for the targeted gold nanocluster formation.展开更多
Chemically modified halloysite proved to be an effective adsorbent for the pesticide chlorpropham and 3-chloroaniline from an aqueous solution. Adsorption experiments were conducted using such procedures as the time-d...Chemically modified halloysite proved to be an effective adsorbent for the pesticide chlorpropham and 3-chloroaniline from an aqueous solution. Adsorption experiments were conducted using such procedures as the time-dependent (kinetic) procedure and the concentration dependent (isotherm) procedure. Results indicate that the adsorption process is related to the kind of the studied compound. The equilibrium data are well suited to a Freundlich isotherm in the case of both investigated compounds. Adsorption kinetics of chlorpropham and 3-chloroaniline on acid-treated halloysite was successfully described by pseudo-second order kinetic model and the model of Weber and Morris. From the present study, we suggest that the adsorption of chlorpropham and 3-chloroaniline on the modified halloysite is a rather complex process involving two steps: external mass transfer and intra-particle diffusion.展开更多
To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut sh...To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut shell AC activated by nitric acid as the support and iron oxide as the active component.The crystal structure,surface morphology,pore structure,functional groups and valence states of the active components of Fe/AC catalysts were characterised by X-ray diffraction,scanning electron microscopy,nitrogen adsorption and desorption,Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,respectively.The effect of Fe loading and calcination temperature on the low-temperature denitration of NH_(3)-SCR over Fe/AC catalysts was studied using NH_(3)as the reducing gas at low temperature(150℃).The results show that the iron oxide on the Fe/AC catalyst is spherical and uniformly dispersed on the surface of AC,thereby improving the crystallisation performance and increasing the number of active sites and specific surface area on AC in contact with the reaction gas.Hence,a rapid NH_(3)-SCR reaction was realised.When the roasting temperature remains constant,the iron oxide crystals formed by increasing the amount of loading can enter the AC pore structure and accumulate to form more micropores.When the roasting temperature is raised from 400 to 500℃,the iron oxide is mainly transformed fromα-Fe_(2)O_(3)toγ-Fe_(2)O_(3),which improves the iron oxide dispersion and increases its denitration active site,allowing gas adsorption.When the Fe loading amount is 10%,and the roasting temperature is 500℃,the NO removal rate of the Fe/AC catalyst can reach 95%.According to the study,the low-temperature NH_(3)-SCR mechanism of Fe/AC catalyst is proposed,in which the redox reaction between Fe~(2+)and Fe~(3+)will facilitate the formation of reactive oxygen vacancies,which increases the amount of oxygen adsorption on the surface,especially the increase in surface acid sites,and promotes and adsorbs more reaction gases(NH_(3),O_(2),NO).The transformation from the standard SCR reaction to the fast SCR reaction is accelerated.展开更多
The catalytic transformation of cellulose, the major component of abundant and renewable lignocellulosic biomass, into building-block chemicals is a key to establishing sustainable chemical processes. Cellulose is a p...The catalytic transformation of cellulose, the major component of abundant and renewable lignocellulosic biomass, into building-block chemicals is a key to establishing sustainable chemical processes. Cellulose is a polymer of glucose and a lot research effort has been devoted to the conversion of cellulose to six-carbon platform compounds such as glucose and glucose derivatives through C-O bond activation. There also ex- ist considerable studies on the catalytic cleavage of C-C bonds in biomass for the production of high-value chemicals, in particular polyols and organic acids such as ethylene glycol and lactic acid. This review article highlights recent advances in the development of new catalytic systems and new strategies for the selective cleavage of C-C bonds in cellulose and its derived carbohydrates under inert, reductive and oxidative atmospheres to produce Q -Cs polyols and organic acids. The key factors that influence the catalytic performance will be clarified to provide insights for the design of more efficient catalysts for the transformation of cellulose with precise cleavage of C-C bonds to high-value chemicals. The reaction mechanisms will also be discussed to understand deeply how the selective cleavage of C-C bonds can be achieved in biomass.展开更多
Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity.However,its inadequate catalytic activity results in difficulty in e...Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity.However,its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes.Thus,we constructed a photochemical system composed of hematite with{001}facet of high activity facet and low-cost and non-toxic oxalic acid(OA)for the removal of various types of pollutants.The removal rate for the degradation of metronidazole,tetracycline hydrochloride,Rhodamine B,and hexavalent chromium by hematite nanoplate with the exposed{001}facet activating OA under visible light irradiation was 4.75,2.25,2.33,and 2.74 times than that by the exposed{110}facet,respectively.Density functional theory(DFT)calculation proved that the OA molecule was more easily adsorbed on the{001}facet of hematite than that on the{110}facet,which would favor the formation of the more Fe(Ⅲ)-OA complex and reactive species.In addition,the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals,and the possible degradation pathway for metronidazole included carbon chain fracture,hydroxyethyl-cleavage,denitrogenation,and hydroxylation.Thus,this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation.展开更多
基金This work was supported by the Natural Science Foundation of Jiangsu Province.
文摘The title compounds were prepared by the enzymatic resolution of the corresponding N-acetylated DL-amino acids methyl esters, which were obtained from t-butyl chloride via an 8-step synthesis.
文摘Leaf acid phosphatase (APase) activities of 274 soybean genotypes were surveyed under field conditions with two levels of P supplies, and a nutrient solution culture experiment with eight selected genotypes was subsequently conducted under greenhouse conditions to further characterize APase activity and its isoform expression induced by P starvation. Results from the field experiment showed that there was a great genotypic variation for leaf APase activity among the tested soybean genotypes from different origins, and APase activity in many of the tested genotypes (about 60%) was generally increased in the treatment without P fertilizer addition. Results from the nutrient solution culture experiment showed that APase activity in all the eight tested genotypes was generally enhanced by P starvation. Six isoforms of APases were detected in isoelectric focusing gels with samples from both young and old leaves. The activity of all the six isoforms was increased by P starvation, but no new APase isoform was induced. Our results suggest that leaf APase activity could serve as an enzymatic indicator of P starvation for soybean; the increase in leaf APase activity under low P stress was mainly caused by the increase in the activity of existing isoforms but not by the induction of new isoforms.
基金supported by the National Natural Science Foundation of China(21373185,41672033,21506188,21404090)the Open Project Programs of Engineering Research Center of Non-metallic Minerals of Zhejiang Province(ZD2015k07)+2 种基金of State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology(GCTKF2014006)of Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province(2016)of State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology(CRE-2016-C-303)~~
文摘The use of H2SO4‐,HCl‐,H3PO4‐,and CH3COOH‐activated montmorillonite(Mt)and WOx/H3PO4‐activated Mt as catalysts for the gas‐phase dehydration of glycerol was investigated.The WOx/H3PO4‐activated Mt catalysts were prepared by an impregnation method using H3PO4‐activated Mt(Mt‐P)as the support.The catalysts were characterized using powder X‐ray diffraction,Fourier‐transform infrared spectroscopy,N2adsorption‐desorption,diffuse reflectance ultraviolet‐visible spectroscopy,temperature‐programmed desorption of NH3,and thermogravimetric analysis.The acid activation of Mt and WOx loaded on Mt‐P affected the strength and number of acid sites arising from H+exchange,the leaching of octahedral Al3+cations from Mt octahedral sheets,and the types of WOx(2.7≤x≤3)species(i.e.,isolated WO4/WO6‐containing clusters,two‐dimensional[WO6]polytungstates,or three‐dimensional WO3crystals).The strong acid sites were weakened,and the weak and medium acid sites were strengthened when the W loading on Mt‐P was12wt%(12%W/Mt‐P).The12%W/Mt‐P catalyst showed the highest catalytic activity.It gave a glycerol conversion of89.6%and an acrolein selectivity of81.8%at320°C.Coke deposition on the surface of the catalyst led to deactivation.
基金supported by the National Natural Science Foundation of China(No.21373025)the major project of Tangshan Normal College(No.2017B01)
文摘This paper systematically studies the reaction mechanisms of formic acid catalyzed by transition metal oxide MoO. Three different reaction pathways of Routes I, Ⅱ and Ⅲ were found through studying the reaction mechanism of transition metal oxide MoO catalyzing the formic acid. The transition metal oxide MoO interacts with the C=O double bond to form chiral chain compounds(Routes I and Ⅱ) and metallic compound MoOH2(Route Ⅲ). In this paper, we have studied the mechanisms of two addition reaction pathways and hydrogen abstraction reaction pathway. Routes I and Ⅱ are both addition reactions, and their products are two different chiral compounds MoO3CH2, which are enantiomeric to each other. In Route Ⅲ, metal compounds MoOH2 and CO2 are obtained from the hydrogen abstraction reaction. Among them, the hydrogen abstraction reaction occurring in Route Ⅲ is more likely to occur than the others. By comparing the results of previous studies on the reaction of MxOy-+ ROH(M= Mo,W; R = Me, Et), we found that the hydrogen abstraction mechanism is completely different from the mechanism of oxygen-containing organic compound catalyzed by MxOy.
基金Project(51008106)supported by the National Natural Science Foundation of China
文摘A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.
基金supported by the National Natural Science Foundation of China(Grant No.41865010)the 2020 Leading Talents of Young Science and Technology Talents in Colleges and Universities of the Inner Mongolia Autonomous Region(Grant No.NJYT-20-A04)the Project of the 10th Group of Grassland Talents of the Inner Mongolia Autonomous Region,the 2022 Inner Mongolia Outstanding Youth Fund Project,and the Key Research and Development and Achievement Transformation Program of the Inner Mongolia Autonomous Region in 2022(Grant No.2022YFHH0035).
文摘With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared by the one-step activation method, with sunflower straw (SS) used as the raw material and H3PO4 used as the activator. Four types of SSAC were prepared with impregnation ratios (weight of SS to weight of H3PO4) of 1:1, 1:2, 1:3, and 1:5, corresponding to SSAC1, SSAC2, SSAC3, and SSAC4, respectively. The adsorption process of acid fuchsin (AF) in water using the four types of SSAC was studied. The results showed that the impregnation ratio significantly affected the structure of the materials. The increase in the impregnation ratio increased the specific surface area and pore volume of SSAC and improved the adsorption capacity of AF. However, an impregnation ratio that was too large led to a decrease in specific surface area. SSAC3, with an impregnation ratio of 1:3, had the largest specific surface area (1 794.01 m2/g), and SSAC4, with an impregnation ratio of 1:5, exhibited the smallest microporosity (0.052 7 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of AF using the four types of SSAC agreed with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable to describe SSAC3 and SSAC4, and the Freundlich isotherm model was appropriate to describe SSAC1 and SSAC2. The result of thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200-mg/L AF with a maximum adsorption capacity of 2 763.36 mg/g, the highest among the four types of SSAC. This study showed that SAAC prepared by the H3PO4-based one-step activation method is a green and efficient carbon material and has significant application potential for the treatment of dye-containing wastewater.
基金supported by the Armenian National Science and Education Fund for Project in New York,USA(No.ANSEF biotech-4241)
文摘The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca^2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3-4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly in)ected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca^2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca^2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.
文摘We studied the influence of seed priming with beta-amino butyric acid(BABA) on the growth, physiological and biochemical parameters of seedlings with varied abiotic stress tolerance, which were raised and grown under unstressed and stressed(NaCl/PEG-6000) conditions. Under stressed conditions, the growth of rice seedlings was less when compared to control plants. After BABA priming, the seedling growth increased both under unstressed and stressed conditions as compared to the respective controls. BABA priming of rice seeds caused increase in the photosynthetic pigment content of the leaves, modified the chlorophyll a fluorescence related parameters and also enhanced the photosystem activities of seedlings when compared to their respective non-primed controls. BABA priming also caused increased mitochondrial activities of the rice seedlings. Moreover, BABA priming significantly reduced malondialdehyde content in the seedlings and also resulted in accumulation of proline especially in the NaCl tolerant variety Vyttila 6. BABA seed priming also enhanced the activity of nitrate reductase enzyme and activities of antioxidant enzymes like guaiacol peroxidase and superoxide dismutase. The presence of BABA was detected by high performance thin layer chromatography analysis in the rice seeds whereas in the seedlings it was not detected. Thus, it can be inferred that the seed priming effect of BABA mainly occurred within the seeds, which was further carried to the seedlings. It is concluded that BABA priming of seeds improved the drought and salinity stress tolerance of all the three rice varieties and it was significantly evident in the drought tolerant variety Vaisakh and NaCl tolerant variety Vyttila 6, when compared to the stress sensitive variety Neeraja.
基金Project supported by the Natural Science Foundation of Jiangsu Province(BK20151516)the Open Fundation from Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals
文摘The title compound(C(37)H(48)BrNO5, 6) was synthesized from ursolic acid and its crystal structure was determined by single-crystal X-ray diffraction analysis. The compound is of orthorhombic system, space group P212121 with a = 16.846(3), b = 18.844(4), c = 11.262(2)A, Z =4, V = 3575.1(13) A^3, Mr = 666.67, Dc = 1.239 Mg/m^3, S = 1.002, μ = 1.190 mm^-1, F(000) = 1408,the final R = 0.0831 and wR = 0.1459 for 2286 observed reflections(I 〉 2σ(I)). The crystal structure is stabilized by two intermolecular hydrogen bonds(N–H(0A)···O(2) and O(1)–H(1A)···O(3)). In the preliminary antitumor assay, the title compound 6 exhibits potent cytotoxic activity against Hep G2 and SMMC-7721 cells with IC50 values of 1.64 ± 0.21 and 1.22 ± 0.13 μM, respectively.
文摘The β-carboxylic group plays an important role in the peptide formation,esterification and the ester exchange at the phosphoryl group of N-phosphorylated aspartic acid.
文摘TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal analysis, Raman and FTIR measurements. Their acid-catalytic activities were evaluated using the cyclization reaction of pseudoionone. It was found that the obtained materials possess well-ordered mesostructure, and the grafted TiO2 components were in highly dispersed amorphous form. T/MCM41 without sulfation contained only Lewis acid sites, while Brφnsted and Lewis acidities were remarkably improved for the sulfated materials ST/MCM41 and d-ST/MCM41. T/MCM-41 was not active for the cyclization reaction of pseudoionone, but ST/MCM-41 and d-ST/MCM-41 possessed favorable catalytic activities. The catalytic performance of ST/MCM-41 was comparable with that of the commercial solid acid catalyst of Amberlyst-15, and better than that of d-ST/MCM-41, although the latter underwent a second TiO2 grafting process and accordingly had higher Ti and S content. The specific surface structure of Si-O-Ti-O-S=O in ST/MCM-41 and the bilateral induction effect of Si and S=O on Si-O-Ti bonds were speculated to account for its higher acid catalytic activity.
基金supported by Major Natural Science Foundation of Guangdong Provincethe Trans-century Training Programmed Foundation for the Talents of the State Education Ministry of Chinaand the Foundation for the Key Teachers in Chinese University
文摘The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures included benzene/toluene, toluene/xylene, benzene/isopropylbenzene, ethyl acetate/toluene and benzene/ethyl acetate. Experimental results show that various ACF-Ps, as with ACF-W, can remove both vapors in binary vapor mixtures with over 99% of removal efficiency before the breakthrough point of the more weakly adsorbed vapor. In dynamic competitive adsorption, the more weakly adsorbed vapor not only penetrates early, but also will be displaced and desorbed consequently by stronger adsorbate and therefore produces a rolling up in the breakthrough curve. The ACF-Ps prepared at different temperatures have somewhat different adsorption selectivity. The feed concentration ratio of vapors, the length/diameter ratio and the thick of bed have effect on competitive adsorption. The competitive adsorption ability of a vapor is mainly related to its boiling point. Usually, the higher the boiling point, the stronger the vapor adsorbed on ACF-P.
基金supported by National Natural Science Foundation of China(30000112)Shanxi Province Natural Science Foundation(20001037).
文摘Systemic acquired resistance (SAR), known as the broad-spectrum, inducible plant immunity, is a defense response triggered by pathogen infection. The response starts from the recognition of plant resistance (R) with the corresponding avirulence (avr) gene from the pathogen. There are some genes for convergence of signals downstream of different R/avr interacting partners into a single signaling pathway. Salicylic acid (SA) is required for the induction of SAR and involved in transducing the signal in target tissues. The SA signal is transduced through NPR1, a nuclear-localized protein that interacts with transcription factors that are involved in regulating SA-mediated gene expression. Some chemicals that mimic natural signaling compounds can also activate SAR. The application of biochemical activators to agriculture for plant protection is a novel idea for developing green chemical pesticide.
基金supported by the National Key Basic Research Program of China (2013CB932703, 2013CB933704)the National Natural Science Foundation of China (11404333, 31571026)the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase)
文摘Coating of gold nanoclusters with peptides is an important targeting method in biomedical applications.However, their synthetic method highly influences their targeting ability. Current methods often use harsh reagents and organic solvents to control morphology, which are not preferred for biomedical applications. Recently, several peptides with specific amino acid sequences have successfully been used to reduce Au ions and synthesize biocompatible peptide-covered gold particles in situ.However, the molecular mechanism of peptide-assisted nanocluster formation is yet unclear. Thus, reactive abilities of different amino acids should be studied to improve design of peptides with predetermined amino acid content and consequently, synthesize gold nanoclusters with improved performance. In this theoretical study, we have approximated the reactive abilities of 20 natural amino acids in their neutral state using density functional theory calculations, such as Fukui indices and HOMO/LUMO composition analysis. We have found that the top reducing agents are tryptophan, histidine, and tyrosine, and thestrongest binding can be expected from methionine and cysteine. Further study of the exact reactive sites in these high reactive amino acids provided the deep insight for the peptide design route for the targeted gold nanocluster formation.
文摘Chemically modified halloysite proved to be an effective adsorbent for the pesticide chlorpropham and 3-chloroaniline from an aqueous solution. Adsorption experiments were conducted using such procedures as the time-dependent (kinetic) procedure and the concentration dependent (isotherm) procedure. Results indicate that the adsorption process is related to the kind of the studied compound. The equilibrium data are well suited to a Freundlich isotherm in the case of both investigated compounds. Adsorption kinetics of chlorpropham and 3-chloroaniline on acid-treated halloysite was successfully described by pseudo-second order kinetic model and the model of Weber and Morris. From the present study, we suggest that the adsorption of chlorpropham and 3-chloroaniline on the modified halloysite is a rather complex process involving two steps: external mass transfer and intra-particle diffusion.
基金Funded by the General Project of Science and Technology Plan of Yunnan Science and Technology Department(Nos.202001AT070029,2019FB077)Open Fund of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab-20-4)。
文摘To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut shell AC activated by nitric acid as the support and iron oxide as the active component.The crystal structure,surface morphology,pore structure,functional groups and valence states of the active components of Fe/AC catalysts were characterised by X-ray diffraction,scanning electron microscopy,nitrogen adsorption and desorption,Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,respectively.The effect of Fe loading and calcination temperature on the low-temperature denitration of NH_(3)-SCR over Fe/AC catalysts was studied using NH_(3)as the reducing gas at low temperature(150℃).The results show that the iron oxide on the Fe/AC catalyst is spherical and uniformly dispersed on the surface of AC,thereby improving the crystallisation performance and increasing the number of active sites and specific surface area on AC in contact with the reaction gas.Hence,a rapid NH_(3)-SCR reaction was realised.When the roasting temperature remains constant,the iron oxide crystals formed by increasing the amount of loading can enter the AC pore structure and accumulate to form more micropores.When the roasting temperature is raised from 400 to 500℃,the iron oxide is mainly transformed fromα-Fe_(2)O_(3)toγ-Fe_(2)O_(3),which improves the iron oxide dispersion and increases its denitration active site,allowing gas adsorption.When the Fe loading amount is 10%,and the roasting temperature is 500℃,the NO removal rate of the Fe/AC catalyst can reach 95%.According to the study,the low-temperature NH_(3)-SCR mechanism of Fe/AC catalyst is proposed,in which the redox reaction between Fe~(2+)and Fe~(3+)will facilitate the formation of reactive oxygen vacancies,which increases the amount of oxygen adsorption on the surface,especially the increase in surface acid sites,and promotes and adsorbs more reaction gases(NH_(3),O_(2),NO).The transformation from the standard SCR reaction to the fast SCR reaction is accelerated.
基金supported by the National Natural Science Foundation of China (21173172 and 21473141)the Research Fund for the Doctorial Program of Higher Education (No. 20130121130001)the Program for Innovative Research Team in University (No. IRT_14R31)
文摘The catalytic transformation of cellulose, the major component of abundant and renewable lignocellulosic biomass, into building-block chemicals is a key to establishing sustainable chemical processes. Cellulose is a polymer of glucose and a lot research effort has been devoted to the conversion of cellulose to six-carbon platform compounds such as glucose and glucose derivatives through C-O bond activation. There also ex- ist considerable studies on the catalytic cleavage of C-C bonds in biomass for the production of high-value chemicals, in particular polyols and organic acids such as ethylene glycol and lactic acid. This review article highlights recent advances in the development of new catalytic systems and new strategies for the selective cleavage of C-C bonds in cellulose and its derived carbohydrates under inert, reductive and oxidative atmospheres to produce Q -Cs polyols and organic acids. The key factors that influence the catalytic performance will be clarified to provide insights for the design of more efficient catalysts for the transformation of cellulose with precise cleavage of C-C bonds to high-value chemicals. The reaction mechanisms will also be discussed to understand deeply how the selective cleavage of C-C bonds can be achieved in biomass.
基金supported by the National Natural Science Foundation of China(No.22176151)。
文摘Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity.However,its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes.Thus,we constructed a photochemical system composed of hematite with{001}facet of high activity facet and low-cost and non-toxic oxalic acid(OA)for the removal of various types of pollutants.The removal rate for the degradation of metronidazole,tetracycline hydrochloride,Rhodamine B,and hexavalent chromium by hematite nanoplate with the exposed{001}facet activating OA under visible light irradiation was 4.75,2.25,2.33,and 2.74 times than that by the exposed{110}facet,respectively.Density functional theory(DFT)calculation proved that the OA molecule was more easily adsorbed on the{001}facet of hematite than that on the{110}facet,which would favor the formation of the more Fe(Ⅲ)-OA complex and reactive species.In addition,the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals,and the possible degradation pathway for metronidazole included carbon chain fracture,hydroxyethyl-cleavage,denitrogenation,and hydroxylation.Thus,this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation.