The Liaoyang Petrochemical Company has successfullydeveloped a novel ionic liquid catalyst for carbonylationof ethylene oxide with carbon dioxide to form ethylenecarbonate (EC). This catalyst can achieve an 100 % co...The Liaoyang Petrochemical Company has successfullydeveloped a novel ionic liquid catalyst for carbonylationof ethylene oxide with carbon dioxide to form ethylenecarbonate (EC). This catalyst can achieve an 100 % conversionand a 98% selectivity at low temperature andunder low pressure, featuring high catalytic activity, goodstability, good adaptability to feedstocks and low productioncost.展开更多
The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based support...The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based supported ionic liquid phase(Au–SILP)technology with the[N(CN)2^–]anion.This strategy enables HCl to accept electrons from[N(CN)2^–]anions in Au–[N(CN)2^–]complexes rather than from pure[Bmim][N(CN)2],leading to notable improvement in both the reaction path and the stability of the catalyst without changing the reaction triggered by acetylene adsorption.Furthermore,the induction period of the Au–SILP catalyst was shown to be absent in the reaction process due to the high Au(III)content in the Au(Ⅲ)/Au(Ⅰ)site and the high substrate diffusion rate in the ionic liquid layer.This work provides a facile method to improve the stability of Au-based catalysts for acetylene hydrochlorination.展开更多
Acidic ionic liquid([BsAIm][OTf]) was immobilized on sulfhydryl-group-modified SiO2(MPS-SiO2) via free radical addition reaction. The[BsAIm][OTf] loading on acidic ionic liquid-functionalized silica([BsAIm][OTf]/SiO2)...Acidic ionic liquid([BsAIm][OTf]) was immobilized on sulfhydryl-group-modified SiO2(MPS-SiO2) via free radical addition reaction. The[BsAIm][OTf] loading on acidic ionic liquid-functionalized silica([BsAIm][OTf]/SiO2) was controlled through tuning the sulfydryl(SH)content of MPS-SiO2. All the samples were characterized by FT-IR, elemental analysis, N2adsorption-desorption measurements and TGDTA. The catalytic performance of [BsAIm][OTf]/SiO2in the esterification of oleic acid and the transesterification of glycerol trioleate for biodiesel production was investigated. The results showed that with the increase of [BsAIm][OTf] loading on SiO2the specific surface area and pore volume of [BsAIm][OTf]/SiO2decreased, and the pore diameter of [BsAIm][OTf]/SiO2narrowed. In the esterificaiton of oleic acid, the oleic acid conversion increased with the increasing [BsAIm][OTf] loading. In the transesterification of glycerol trioleate, with the increasing[BsAIm][OTf] loading the glycerol trioleate conversion decreased and the selectivities to glycerol monooleate and methyl oleate increased.展开更多
At first,NaY zeolite was modified to HY zeolite by ion exchange method,and then compound salt ion liquids were immobilized onto HY zeolite to prepare two immobilized ionic liquid catalysts HY-[HeMIM]Cl/(ZnBr_(2))_(2) ...At first,NaY zeolite was modified to HY zeolite by ion exchange method,and then compound salt ion liquids were immobilized onto HY zeolite to prepare two immobilized ionic liquid catalysts HY-[HeMIM]Cl/(ZnBr_(2))_(2) and HY-[BMIM]Br/(ZnBr_(2))_(2).The synthesized immobilized ionic liquid catalysts were tested by FT-IR,XRD,TG and BET respectively.The results show that the prepared immobilized ionic liquids are the target product,have good thermal stability,and meet the requirements of catalysis.After immobilization,the intensity of crystallization peak is reduced,and the specific surface area becomes smaller.Conversion rate,selectivity and yield are as evaluation indicators to study the catalytic performance of immobilized ionic liquid catalysts for the synthesis of propylene carbonate from carbon dioxide and propylene oxide.Experimental results show that compound salt ion liquids were successfully immobilized on HY zeolite.Under the conditions of a temperature of 120℃,a pressure of 2.0 MPa,and a catalyst dosage of 2.0%,the catalytic effect of HY-[HeMIM]Cl/(ZnBr_(2))_(2) is better than HY-[BMIM]Br/(ZnBr_(2))_(2),and the conversion rate,selectivity and yield are 92.34%,98.87%and 91.30%.展开更多
Room temperature ionic liquids as solvents for palladium-catalyzed copolymerization of carbon monoxide and styrene were prepared by reaction of aqueous lead tetrafluoroborate with correspond-ing chloride or bromide sa...Room temperature ionic liquids as solvents for palladium-catalyzed copolymerization of carbon monoxide and styrene were prepared by reaction of aqueous lead tetrafluoroborate with correspond-ing chloride or bromide salts. The recyclability of palladium composite catalyst in various ionic liquids was investigated. [Pd(bipy)2][BF4]2 showed a lower catalytic activity than [Pd(bipy)2][PF6]2 in similar conditions, although the catalytic activity of each composite catalyst in ionic liquids still existed after 4 successive recycles. It was shown the catalytic activity of palladium composite catalyst was higher than that of the catalyst formed in situ from palladium acetate, 2,2′-bipyridyl, and HA (A=PF6-, BF4-) in ionic liquids. The effects of volume of ionic liquids, reaction time, and the dosage of benzoquinone on the copolymerization were also studied.展开更多
A series of polymeric ionic liquids(PILs)used as effective heterogeneous catalysts for biodiesel production via esterification of free fatty acids(FFAs)were effectively prepared by the reaction of poly(ethylene imine)...A series of polymeric ionic liquids(PILs)used as effective heterogeneous catalysts for biodiesel production via esterification of free fatty acids(FFAs)were effectively prepared by the reaction of poly(ethylene imine)(PEI)polymers with different molecular weight and 1,3-propanesultone,followed by the further acidification with differential effective acids,i.e.H2SO4,CF3SO3H,CH3SO3H or p-toluenesulfonic acid(p-TSA).Ultrahigh acidity and catalytic performance were achieved and could be fine-tuned by simply adjusting the molecular weight of PEI and by further treatment of acids.Specifically,under the optimal conditions(i.e.reaction temperature was 70℃,reaction time was 2.0 h,catalyst dosage was 3.15%(mass),and alcohol/acid molar ratio was 14:1)acquired through the Box-BEHNKEN response surface methodology,a high oleic acid conversion of 98.42%could be obtained over the optimal PIL,PEI(70000)-PS-p-TSA.Additionally,our PILs also showed high generality for esterification of other FFAs,with general high conversion over 90%noted in each case even under much milder reaction conditions compared to other conventional catalysts.展开更多
The carboxylic functionalized ionic liquid was immobilized on the molecular sieve(MCM-22)and then applied in the catalytic synthe-sis of ethyl methyl carbonate(EMC)via transesterification of dimethyl carbonate(DMC)wit...The carboxylic functionalized ionic liquid was immobilized on the molecular sieve(MCM-22)and then applied in the catalytic synthe-sis of ethyl methyl carbonate(EMC)via transesterification of dimethyl carbonate(DMC)with ethanol.Combined characterization results of FT-IR,XRD and TG suggest that the ILs had been immobilized on molecular sieve MCM-22.The influences of reaction temperature,time,and the mass ratio of MCM-22-CPTES-MIL/Ca O have also been investigated in detail.The catalytic tests demonstrated that MCM-22-CPTES-MIL/Ca O could catalyze the transesterification of DMC and ethanol with high efficiency,superior to those results of the heterogeneous catalysts reported previously.展开更多
The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) ...The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.展开更多
文摘The Liaoyang Petrochemical Company has successfullydeveloped a novel ionic liquid catalyst for carbonylationof ethylene oxide with carbon dioxide to form ethylenecarbonate (EC). This catalyst can achieve an 100 % conversionand a 98% selectivity at low temperature andunder low pressure, featuring high catalytic activity, goodstability, good adaptability to feedstocks and low productioncost.
文摘The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based supported ionic liquid phase(Au–SILP)technology with the[N(CN)2^–]anion.This strategy enables HCl to accept electrons from[N(CN)2^–]anions in Au–[N(CN)2^–]complexes rather than from pure[Bmim][N(CN)2],leading to notable improvement in both the reaction path and the stability of the catalyst without changing the reaction triggered by acetylene adsorption.Furthermore,the induction period of the Au–SILP catalyst was shown to be absent in the reaction process due to the high Au(III)content in the Au(Ⅲ)/Au(Ⅰ)site and the high substrate diffusion rate in the ionic liquid layer.This work provides a facile method to improve the stability of Au-based catalysts for acetylene hydrochlorination.
基金supported by the National Natural Science Foundation of China(No.20706006 and 20976013)
文摘Acidic ionic liquid([BsAIm][OTf]) was immobilized on sulfhydryl-group-modified SiO2(MPS-SiO2) via free radical addition reaction. The[BsAIm][OTf] loading on acidic ionic liquid-functionalized silica([BsAIm][OTf]/SiO2) was controlled through tuning the sulfydryl(SH)content of MPS-SiO2. All the samples were characterized by FT-IR, elemental analysis, N2adsorption-desorption measurements and TGDTA. The catalytic performance of [BsAIm][OTf]/SiO2in the esterification of oleic acid and the transesterification of glycerol trioleate for biodiesel production was investigated. The results showed that with the increase of [BsAIm][OTf] loading on SiO2the specific surface area and pore volume of [BsAIm][OTf]/SiO2decreased, and the pore diameter of [BsAIm][OTf]/SiO2narrowed. In the esterificaiton of oleic acid, the oleic acid conversion increased with the increasing [BsAIm][OTf] loading. In the transesterification of glycerol trioleate, with the increasing[BsAIm][OTf] loading the glycerol trioleate conversion decreased and the selectivities to glycerol monooleate and methyl oleate increased.
基金Supported by the Key Project of Education Department of Liaoning Province(LQGD2020005)Innovation and Entrepreneurship Planning Project for University Students in Liaoning Province(S202110142033).
文摘At first,NaY zeolite was modified to HY zeolite by ion exchange method,and then compound salt ion liquids were immobilized onto HY zeolite to prepare two immobilized ionic liquid catalysts HY-[HeMIM]Cl/(ZnBr_(2))_(2) and HY-[BMIM]Br/(ZnBr_(2))_(2).The synthesized immobilized ionic liquid catalysts were tested by FT-IR,XRD,TG and BET respectively.The results show that the prepared immobilized ionic liquids are the target product,have good thermal stability,and meet the requirements of catalysis.After immobilization,the intensity of crystallization peak is reduced,and the specific surface area becomes smaller.Conversion rate,selectivity and yield are as evaluation indicators to study the catalytic performance of immobilized ionic liquid catalysts for the synthesis of propylene carbonate from carbon dioxide and propylene oxide.Experimental results show that compound salt ion liquids were successfully immobilized on HY zeolite.Under the conditions of a temperature of 120℃,a pressure of 2.0 MPa,and a catalyst dosage of 2.0%,the catalytic effect of HY-[HeMIM]Cl/(ZnBr_(2))_(2) is better than HY-[BMIM]Br/(ZnBr_(2))_(2),and the conversion rate,selectivity and yield are 92.34%,98.87%and 91.30%.
基金National Natural Science Foundation of China (No.20476080)Natural Science Foundation of Tianjin (No.07JCYBJC00600)
文摘Room temperature ionic liquids as solvents for palladium-catalyzed copolymerization of carbon monoxide and styrene were prepared by reaction of aqueous lead tetrafluoroborate with correspond-ing chloride or bromide salts. The recyclability of palladium composite catalyst in various ionic liquids was investigated. [Pd(bipy)2][BF4]2 showed a lower catalytic activity than [Pd(bipy)2][PF6]2 in similar conditions, although the catalytic activity of each composite catalyst in ionic liquids still existed after 4 successive recycles. It was shown the catalytic activity of palladium composite catalyst was higher than that of the catalyst formed in situ from palladium acetate, 2,2′-bipyridyl, and HA (A=PF6-, BF4-) in ionic liquids. The effects of volume of ionic liquids, reaction time, and the dosage of benzoquinone on the copolymerization were also studied.
基金the National Natural Science Foundation of China(21878054)Project on the Integration of Industry and Education of Fujian Province(2018Y4008)+3 种基金Science and Technology Project of Fujian Educational Committee(JAT190051)Fuzhou University Testing Fund of precious apparatus(2020T008)Research Initiation Funding of Fuzhou University(GXRC-19051)the Award Program for Minjiang Scholar Professorship。
文摘A series of polymeric ionic liquids(PILs)used as effective heterogeneous catalysts for biodiesel production via esterification of free fatty acids(FFAs)were effectively prepared by the reaction of poly(ethylene imine)(PEI)polymers with different molecular weight and 1,3-propanesultone,followed by the further acidification with differential effective acids,i.e.H2SO4,CF3SO3H,CH3SO3H or p-toluenesulfonic acid(p-TSA).Ultrahigh acidity and catalytic performance were achieved and could be fine-tuned by simply adjusting the molecular weight of PEI and by further treatment of acids.Specifically,under the optimal conditions(i.e.reaction temperature was 70℃,reaction time was 2.0 h,catalyst dosage was 3.15%(mass),and alcohol/acid molar ratio was 14:1)acquired through the Box-BEHNKEN response surface methodology,a high oleic acid conversion of 98.42%could be obtained over the optimal PIL,PEI(70000)-PS-p-TSA.Additionally,our PILs also showed high generality for esterification of other FFAs,with general high conversion over 90%noted in each case even under much milder reaction conditions compared to other conventional catalysts.
基金Supported by the Educational Department of Liaoning Province(LZGD2020005)Liaoning Province Innovation and Entrepreneurship Training Project。
文摘The carboxylic functionalized ionic liquid was immobilized on the molecular sieve(MCM-22)and then applied in the catalytic synthe-sis of ethyl methyl carbonate(EMC)via transesterification of dimethyl carbonate(DMC)with ethanol.Combined characterization results of FT-IR,XRD and TG suggest that the ILs had been immobilized on molecular sieve MCM-22.The influences of reaction temperature,time,and the mass ratio of MCM-22-CPTES-MIL/Ca O have also been investigated in detail.The catalytic tests demonstrated that MCM-22-CPTES-MIL/Ca O could catalyze the transesterification of DMC and ethanol with high efficiency,superior to those results of the heterogeneous catalysts reported previously.
基金Supported by the National Natural Science Foundation of China (20576025). the National Key Basic Project of China (2005CCA06100), the Science and Technological Research and Development Project of Hebei Province (07215602D) and the Natural Science Foundation of Hebei Province 032007000010).
文摘The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.