Activated carbon (AC) was fabricated from corncob, which is cheap and abundant. Experimental parameters such as particle size of corncob, KOHlchar weight ratio, and activation temperature and time were optimized to ...Activated carbon (AC) was fabricated from corncob, which is cheap and abundant. Experimental parameters such as particle size of corncob, KOHlchar weight ratio, and activation temperature and time were optimized to generate AC, which shows high methane sorption capacity. AC has high specific surface area (3227 m^2/g), with pore volume and pore size distribution equal to 1.829 cm^3/g and ca. 1.7-2.2 nm, respectively. Under the condition of 2℃ and less than 7.8 MPa, methane sorption in the presence of water (Rw = 1.4) was as high as 43.7 wt% methane per unit mass of dry AC. The result is significantly higher than those of coconut-derived AC (32 wt%) and ordered mesoporous carbon (41.2 wt%, Rw = 4.07) under the same condition. The physical properties and amorphous chaotic structure of AC were characterized by N2 adsorption isotherms, XRD, SEM and HRTEM. Hence, the corncob-derived AC can be considered as a competitive methane-storage material for vehicles, which are run by natural gas. Key words展开更多
We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of plat...We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of platelets of carbon sheets,functionalized with oxygen containing groups,to study the adsorption behavior of methane molecules.In studying methane adsorption behavior,we used Grand Canonical Monte Carlo and Molecular Dynamics methods at different temperatures of 273.15,298.15 and303.15 K.Adsorption isotherms,isosteric heats of adsorption,adsorption energy distributions and porosity changes of the models during adsorption process were analyzed and discussed.Furthermore,radial distribution Functions,relative distribution and diffusion coefficients of methane molecules in activated carbon models at different temperatures were studied.After the analysis,the main results indicated that large micro pores activated carbons were favorable for storing methane at lower temperatures and small micro pores were the most favorable for adsorbing methane molecules at higher temperatures.Interestingly,the developed model structures showed high capacities to store methane molecule at ambient temperatures and low pressure.展开更多
Three different preparation methods including steam physical activation, catalytic carbonation and KOH chemical activation methods were used to prepare municipal solid waste- based carbon materials. The methylene blue...Three different preparation methods including steam physical activation, catalytic carbonation and KOH chemical activation methods were used to prepare municipal solid waste- based carbon materials. The methylene blue (MB) adsorption value was applied to evaluate the adsorption capabilities of the prepared carbon materials. The effects of preparation methods on adsorption capability and yield of products were investigated. The yield of carbon materials with the catalytic carbonation method is the highest, and the KOH activation method is the second level. Considering the adsorption performance, the KOH activation method is much more favorable. Among the different components of municipal solid waste-based carbon materials, the adsorption properties of the single component of paperboard, the double components of tire and paperboard, the triple components of tire, paperboard and polyvinyl chloride (PVC), and the multi-component mixtures are better than those of other single-, double-, triple- and multi-component mixtures, respectively.展开更多
A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon (GAC) under different physical conditions. To carry ...A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon (GAC) under different physical conditions. To carry out the experiments, the volumetric method was used up to 500 psia at constant temperature of 25℃. In these experiments, adsorption as well as desorption capacities of four different GAC in the adsorption of methane, the major constituent of natural gas, at various equilibrium pressures and a constant temperature were studied. Also, various adsorption isotherm models were used to model the experimental data collected from the experiments. The accuracy of the results obtained from the adsorption isotherm models was compared and the values for the regressed parameters were reported. The results shows that the physical characteristics of activated carbons such as BET surface area, micropore volume, packing density, and pore size distribution play an important role in the amount of methane to be adsorbed and desorbed.展开更多
This paper broke with the conventional ways of oxidizing and catalyzing. It researched a new way to prepare activated carbon from anthracites which employed oxidative additives. It investigated the effects of the addi...This paper broke with the conventional ways of oxidizing and catalyzing. It researched a new way to prepare activated carbon from anthracites which employed oxidative additives. It investigated the effects of the additive on adsorption and activation rate of the resultant activated carbon. The results showed that the new additives not only improved the adsorptivity but also increased the activation rate greatly, which is able to decrease the preparation cost.展开更多
Methane adsorption by different forms of activated carbon obtained from coffee husks, including monolith honeycomb and disc types, was studied by activation with zinc salts and potassium hydroxide at 298.15 K and 303....Methane adsorption by different forms of activated carbon obtained from coffee husks, including monolith honeycomb and disc types, was studied by activation with zinc salts and potassium hydroxide at 298.15 K and 303.15 K and pressures up to 30.00 atm in a volumetric adsorption apparatus. We observed increased methane adsorption capacity on a mass basis in the different activated carbon monoliths with increasing surface area, total pore volume and micropore volume, with the honeycomb type displaying the highest methane absorption capacity. The maximum volumetric methane uptake by the synthesised carbon monoliths was observed to be 130 V/V at 298.15 K and 30.00 atm for honeycomb monoliths synthesised with zinc chloride (ZnCl2) and Polyvinyl alcohol (PVA) as the binder. Adsorption calorimetry results were used to describe the interaction between guest molecules and the adsorbent at low surface coverage and the energetic heterogeneous surface nature of the adsorbent.展开更多
Activated carbons(ACs)are highly porous materials with a broad range of applications in industry such as gas storage,water and air purification,gas separation,and catalysis.The microstructure for ACs is still not clea...Activated carbons(ACs)are highly porous materials with a broad range of applications in industry such as gas storage,water and air purification,gas separation,and catalysis.The microstructure for ACs is still not clearly known in spite of their wide industrial uses.There have been efforts to describe the structure of activated carbons experimentally in relation to its methane adsorption characteristics.In this review,it is assumed that natural gas is sorely composed of CH_(4)for simplicity(because CH_(4)is the major component,>90%).Experimental means to unveil the microstructure and many other properties for these ACs have some limitations,to overcome these limitations,ACs structural modeling and simulation become very important to match the properties with the desired methane adsorption characteristics.The major challenge that methane adsorption simulation faces for so long,is the lack of realistic AC models.This paper reviews the current efforts to develop the realistic AC models for methane adsorption,most of the built models are based on experimental carbon structural findings from the previous studies.The structural parameters including pore size distribution(PSD),specific surface area(SSA),pore volume and extent of curvature in the carbon materials and their role to methane adsorption are discussed.The role of chemical properties,such as presence of functional groups and the nature of the functional groups to the adsorption properties of methane,are also introduced.Different pore morphologies(such as slit pore,platelet,spherical,etc.)are studied with their effect on methane adsorption and presented too.It is found that each of the mentioned parameters has its own bearing to methane adsorption.Furthermore,this work analyzes different current techniques used in modeling natural gas adsorption,and the mechanisms are able to reproduce the specific carbon materials for a certain desired set of adsorption characteristic.Some future works are also recommended in this area,so that better representations of ACs can be obtained for methane storage purposes.展开更多
Activated carbon(AC)was synthesized from palm kernel shell(PKS)using different activating agents,i.e.,steam,carbon dioxide(CO 2),and CO 2-steam,in order to analyze the impact of acti-vating agents on the pore opening ...Activated carbon(AC)was synthesized from palm kernel shell(PKS)using different activating agents,i.e.,steam,carbon dioxide(CO 2),and CO 2-steam,in order to analyze the impact of acti-vating agents on the pore opening of AC.In this study,AC produced from PKS was found to have great potential as an adsorbent for methane storage.The different molecular diffusivity and reac-tivity of the combination of CO 2 and steam succeeded in producing AC with the highest burn-offof 78.57%,a surface area of 869.82 m 2/g,a total pore volume of 0.47 cm 3/g,and leading to maximum methane gas adsorption capacity of 4.500 mol/kg.All types of ACs exhibited the best fit with the Freundlich isotherm model,with the correlation coefficient(R 2)ranging from 0.997 to 0.999,indicating the formation of multilayer adsorption.In addition,the adsorption kinetic data for all ACs followed the pseudo-first-order model showing that the rate of adsorption was dependent on both the adsorbent and the adsorbate and was governed primarily by physical ad-sorption between the pore surface and methane gas.The results of intraparticle diffusion model indicated that the adsorption of methane was affected by both pore diffusion and exterior layer diffusion due to the different adsorption rates.展开更多
Adsorption/desorption isotherms of supercritical methane on superactivated carbon have been measured in the range of 0–10 MPa and 233–333 K (20 K interval). The reversibility of the physical adsorption process is ac...Adsorption/desorption isotherms of supercritical methane on superactivated carbon have been measured in the range of 0–10 MPa and 233–333 K (20 K interval). The reversibility of the physical adsorption process is acknowledged. The heat of adsorption of 16.5 kJ/mol is determined from the isotherms, and a new modeling strategy for isotherms with maximum is presented. The model yields fits to the experimental isotherms with precision of ±2%, maintaining the constancy of the characteristic energy of adsorption. The exponent of the model equation expresses the pore size distribution feature of the adsorbent. The density of the supercritical adsor-bate is evaluated as a parameter of the model. It is shown that the conventional isotherm theory works too at supercritical condition if the limit state of supercritical adsorption is introduced into isotherm modeling.展开更多
Walnut-shellactivated carbons(WSACs)were prepared by the KOH chemicalactivation.The effects of carbonization temperature,activation temperature,and ratio of KOH to chars on the pore development of WSACs were investi...Walnut-shellactivated carbons(WSACs)were prepared by the KOH chemicalactivation.The effects of carbonization temperature,activation temperature,and ratio of KOH to chars on the pore development of WSACs were investigated.Fourier transform infrared spectroscopy(FTIR),X-ray powder diffraction(XRD),and scanning electron microscopy(SEM)were employed to characterize the microstructure and morphology of WSACs.Methanoladsorption performance onto the optimalWSAC and the coal-based AC were also investigated.The results show that the optimalpreparation conditions are a carbonization temperature of 700 ℃,an activation temperature of 700 ℃,and a mass ratio of 3.The BET surface area,the micropore volume,and the micropore volume percentage of the optimalWASC are 1636 m^2/g,0.641 cm^3/g and 81.97%,respectively.There are a lot of micropores and a certain amount of meso-and macropores.The characteristics of the amorphous state are identified.The results show that the optimalWSAC is favorable for methanoladsorption.The equilibrium adsorption capacity of the optimalWSAC is 248.02mg/g.It is shown that the equilibrium adsorption capacity of the optimalWSAC is almost equivalent to that of the common activated carbon.Therefore the optimalWSAC could be a potentialadsorbent for the solar energy adsorption refrigeration cycle.展开更多
In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series...In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series of coconut-shell-based granular activated carbons(GACs)with different pore structures were prepared,which were characterized by different methods.The influence of the pore structure on the separation properties was investigated in detail.The results show that one of the carbons prepared(GAC-3)has high CH4 equilibrium adsorption capacity(3.28 mol·kg–1)at 298 K and equilibrium separation coefficient(3.95).The CH_(4)/N_(2)separation on the GACs is controlled by adsorption equilibrium as compared with the dynamic effect.Taking the specific surface area,for example,the common characterization index of the pore structure is not enough to judge the separation performance of the GACs.However,the microstructure of carbon materials plays a decisive role for CH_(4)/N_(2)separation.According to the pore-structure analysis,the effective pore size for the CH_(4)/N_(2)separation is from 0.4 to 0.9 nm,with the optimum effect occurring in the range of 0.6–0.7 nm,followed by the range of 0.7~0.9 nm.Also,a four-bed vacuum pressure swing adsorption process was adopted to evaluate the performance of GACs for the separation of CH4 from nitrogen.展开更多
Activated carbon with high specific surface area and considerable mesopores was prepared from bamboo scraps by phosphoric acid activation.The effect of activation conditions was studied.Under the conditions of impregn...Activated carbon with high specific surface area and considerable mesopores was prepared from bamboo scraps by phosphoric acid activation.The effect of activation conditions was studied.Under the conditions of impregnating bamboo with 80%H3PO_(4) at 80℃ for 9 days and activation at 500℃ for 4 h,the prepared activated carbon had the highest mesopore volume of 0.67 cm3/g,a specific surface area of 1567 m2/g,and the mesopore ratio reached 47.18%.The study on adsorption isotherms of CH4,CO_(2),N2 and O_(2) on the activated carbon were carried out at 298 K.The considerable difference in the adsorption capacity between CO_(2) and the other gases was observed,which would be of interest for the adsorptive separation/purification of gaseous CO_(2) from its mixtures,especially from mixtures with N2 and/or O_(2).展开更多
A combined method of density functional theory (DFT) and statistics integral equation (SIE) for the determina-tion of the pore size distribution (PSD) is developed based on the experimental adsorption data of nitrogen...A combined method of density functional theory (DFT) and statistics integral equation (SIE) for the determina-tion of the pore size distribution (PSD) is developed based on the experimental adsorption data of nitrogen on acti-vated mesocarbon microbead (AMCMB) at 77 K. The pores of AMCMB are described as slit-shaped with PSD. Based on the PSD, methane adsorption and phase behavior are studied by the DFT method. Both nitrogen and methane molecules are modeled as Lennard-Jones spherical molecules, and the well-known Steeles 10-4-3 poten-tial is used to represent the interaction between the fluid molecule and the solid wall. In order to test the combined method and the PSD model, the Intelligent Gravimetric Analyzer (IGA-003) was used to measure the adsorption of methane on the AMCMB. The DFT results are in good agreement with the experimental data. Based on these facts, we predict the adsorption amount of methane, which can reach 32.3 w at 299 K and 4 MPa. The results indicate that the AMCMBs are a good candidate for adsorptive storage of methane and natural gas. In addition, the capillary condensation and hysteresis phenomenon of methane are also observed at 74.05 K.展开更多
Lacking in literature is the use of discard coal to produce activated carbon and in its subsequent use in the storage of natural gas. In this study, the characterization and gas storage evaluation of a largely porous ...Lacking in literature is the use of discard coal to produce activated carbon and in its subsequent use in the storage of natural gas. In this study, the characterization and gas storage evaluation of a largely porous activated carbon with large surface area synthesized from discard coal were investigated. Discard coals are waste material generated from coal beneficiation process. In developing the activated carbon, chemical activation route with the use of KOH reagent was applied. The effects of KOH/discard coal weight ratio (1:1, 2.5:1, 4:1), temperature (400-800 ℃) and particle size (0.15-0.25 mm, 0.25-0.5 mm, 0.5-1 mm) on the adsorptive properties of the activated carbon were methodically evaluated and optimized using response surface methodology. The synthesized activated carbon was characterized using BET, SEM/EDS, and XRD. The results showed that for each activation process, the surface area and pore volume of the resulting activated carbon increased with increased temperature and KOH/discard coal weight ratio. The maximum surface area of 1826.41 m2/g, pore volume of 1.252 cm^3/g and pore size of 2.77 nm were obtained at carbonization temperature of 800 ℃ and KOH/discard coal weight ratio of 4:1. Methane and nitrogen adsorption data at high pressure were fitted to Toth isotherm model with a predictive accuracy of about 99%. Adsorption parameters using the Toth model provides useful information in the design of adsorbed natural gas storage system. According to the requirements of adsorbent desired for natural gas storage, it could be stated that the synthesized activated carbon could well be applied for natural gas storage.展开更多
Activated carbon(AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC's specific surface area and adsorption capacity f...Activated carbon(AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC's specific surface area and adsorption capacity for Pb2+ were examined to optimize these parameters. The optimal conditions for the preparation of AC were determined to be activation temperature of 500 °C, activation time of 1 h, impregnation ratio of 1:1(solid-to-liquid volume) with the 30% ZnCl2 solution(mass fraction), giving the BET surface area of 393.85 m2/g and yield of 30.14% with 33.45% ash. Also, the pyrolysis temperature was found to be the most important parameter in chemical activation. FTIR spectra provided the evidence of some surface structures such as C=C and C—O—C. In the adsorption studies, a rise in solution pH led to a significant increase in adsorption capacity when the pH value varied from 3.0 to 7.0, and the optimal pH for removal of Pb2+ was 7.0. It was observed that the pseudo-second-order equation provided better correlation for the adsorption rate than the pseudo-first-order and the Langmuir model fitted better than the Freundlich model for adsorption isotherm. The adsorption capacity of AC to Pb2+ was 11.75 mg/L at solution pH 7.0, the equilibrium time 480 min and 25 °C. Moreover, the adsorption process is endothermic according to the value of enthalpy change.展开更多
基金supported by the Scientific Research Foundation(SRF)for Returned Overseas Chinese Scholars(ROCS)the State Education Ministry(SEM)(Grant No.2002-247)+1 种基金the National Natural Science Foundation of ChinaBAOSTEEL Group Corporation(Grant No.50876122)
文摘Activated carbon (AC) was fabricated from corncob, which is cheap and abundant. Experimental parameters such as particle size of corncob, KOHlchar weight ratio, and activation temperature and time were optimized to generate AC, which shows high methane sorption capacity. AC has high specific surface area (3227 m^2/g), with pore volume and pore size distribution equal to 1.829 cm^3/g and ca. 1.7-2.2 nm, respectively. Under the condition of 2℃ and less than 7.8 MPa, methane sorption in the presence of water (Rw = 1.4) was as high as 43.7 wt% methane per unit mass of dry AC. The result is significantly higher than those of coconut-derived AC (32 wt%) and ordered mesoporous carbon (41.2 wt%, Rw = 4.07) under the same condition. The physical properties and amorphous chaotic structure of AC were characterized by N2 adsorption isotherms, XRD, SEM and HRTEM. Hence, the corncob-derived AC can be considered as a competitive methane-storage material for vehicles, which are run by natural gas. Key words
基金Funded by Natural Science Foundation of Shandong Province(No.ZR201702150018)China Postdoctoral Science Foundation Funding Scheme(No.2018M632747)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.18CX02143A,17CX05017)New Faculty Start-up Funding from China University of Petroleum(No.YJ20170019).
文摘We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of platelets of carbon sheets,functionalized with oxygen containing groups,to study the adsorption behavior of methane molecules.In studying methane adsorption behavior,we used Grand Canonical Monte Carlo and Molecular Dynamics methods at different temperatures of 273.15,298.15 and303.15 K.Adsorption isotherms,isosteric heats of adsorption,adsorption energy distributions and porosity changes of the models during adsorption process were analyzed and discussed.Furthermore,radial distribution Functions,relative distribution and diffusion coefficients of methane molecules in activated carbon models at different temperatures were studied.After the analysis,the main results indicated that large micro pores activated carbons were favorable for storing methane at lower temperatures and small micro pores were the most favorable for adsorbing methane molecules at higher temperatures.Interestingly,the developed model structures showed high capacities to store methane molecule at ambient temperatures and low pressure.
基金The National Natural Science Foundation of China(No.51576048)the Environmental Protection Subject Foundation of Jiangsu Province(No.2015013)+3 种基金the Industry,Education and Research Prospective Project of Jiangsu Province(No.BY2015060-04)the Fok Ying Tong Education Foundation(No.142026)the Fundamental Research Funds for the Central UniversitiesProgram for New Century Excellent Talents in University(No.NCET-12-0118)
文摘Three different preparation methods including steam physical activation, catalytic carbonation and KOH chemical activation methods were used to prepare municipal solid waste- based carbon materials. The methylene blue (MB) adsorption value was applied to evaluate the adsorption capabilities of the prepared carbon materials. The effects of preparation methods on adsorption capability and yield of products were investigated. The yield of carbon materials with the catalytic carbonation method is the highest, and the KOH activation method is the second level. Considering the adsorption performance, the KOH activation method is much more favorable. Among the different components of municipal solid waste-based carbon materials, the adsorption properties of the single component of paperboard, the double components of tire and paperboard, the triple components of tire, paperboard and polyvinyl chloride (PVC), and the multi-component mixtures are better than those of other single-, double-, triple- and multi-component mixtures, respectively.
文摘A theoretical and experimental study was conducted to accurately determine the amount of adsorption and desorption of methane by various Granular Activated Carbon (GAC) under different physical conditions. To carry out the experiments, the volumetric method was used up to 500 psia at constant temperature of 25℃. In these experiments, adsorption as well as desorption capacities of four different GAC in the adsorption of methane, the major constituent of natural gas, at various equilibrium pressures and a constant temperature were studied. Also, various adsorption isotherm models were used to model the experimental data collected from the experiments. The accuracy of the results obtained from the adsorption isotherm models was compared and the values for the regressed parameters were reported. The results shows that the physical characteristics of activated carbons such as BET surface area, micropore volume, packing density, and pore size distribution play an important role in the amount of methane to be adsorbed and desorbed.
文摘This paper broke with the conventional ways of oxidizing and catalyzing. It researched a new way to prepare activated carbon from anthracites which employed oxidative additives. It investigated the effects of the additive on adsorption and activation rate of the resultant activated carbon. The results showed that the new additives not only improved the adsorptivity but also increased the activation rate greatly, which is able to decrease the preparation cost.
文摘Methane adsorption by different forms of activated carbon obtained from coffee husks, including monolith honeycomb and disc types, was studied by activation with zinc salts and potassium hydroxide at 298.15 K and 303.15 K and pressures up to 30.00 atm in a volumetric adsorption apparatus. We observed increased methane adsorption capacity on a mass basis in the different activated carbon monoliths with increasing surface area, total pore volume and micropore volume, with the honeycomb type displaying the highest methane absorption capacity. The maximum volumetric methane uptake by the synthesised carbon monoliths was observed to be 130 V/V at 298.15 K and 30.00 atm for honeycomb monoliths synthesised with zinc chloride (ZnCl2) and Polyvinyl alcohol (PVA) as the binder. Adsorption calorimetry results were used to describe the interaction between guest molecules and the adsorbent at low surface coverage and the energetic heterogeneous surface nature of the adsorbent.
基金The authors are grateful for the support from Natural Science Foundation of Shandong Province(ZR201702150018)China Postdoctoral Science Foundation funding scheme(2018M632747)+1 种基金the Fundamental Research Funds for the Central Universities(18CX02143A,17CX05017)new faculty start-up funding from China University of Petroleum(YJ20170019).
文摘Activated carbons(ACs)are highly porous materials with a broad range of applications in industry such as gas storage,water and air purification,gas separation,and catalysis.The microstructure for ACs is still not clearly known in spite of their wide industrial uses.There have been efforts to describe the structure of activated carbons experimentally in relation to its methane adsorption characteristics.In this review,it is assumed that natural gas is sorely composed of CH_(4)for simplicity(because CH_(4)is the major component,>90%).Experimental means to unveil the microstructure and many other properties for these ACs have some limitations,to overcome these limitations,ACs structural modeling and simulation become very important to match the properties with the desired methane adsorption characteristics.The major challenge that methane adsorption simulation faces for so long,is the lack of realistic AC models.This paper reviews the current efforts to develop the realistic AC models for methane adsorption,most of the built models are based on experimental carbon structural findings from the previous studies.The structural parameters including pore size distribution(PSD),specific surface area(SSA),pore volume and extent of curvature in the carbon materials and their role to methane adsorption are discussed.The role of chemical properties,such as presence of functional groups and the nature of the functional groups to the adsorption properties of methane,are also introduced.Different pore morphologies(such as slit pore,platelet,spherical,etc.)are studied with their effect on methane adsorption and presented too.It is found that each of the mentioned parameters has its own bearing to methane adsorption.Furthermore,this work analyzes different current techniques used in modeling natural gas adsorption,and the mechanisms are able to reproduce the specific carbon materials for a certain desired set of adsorption characteristic.Some future works are also recommended in this area,so that better representations of ACs can be obtained for methane storage purposes.
文摘Activated carbon(AC)was synthesized from palm kernel shell(PKS)using different activating agents,i.e.,steam,carbon dioxide(CO 2),and CO 2-steam,in order to analyze the impact of acti-vating agents on the pore opening of AC.In this study,AC produced from PKS was found to have great potential as an adsorbent for methane storage.The different molecular diffusivity and reac-tivity of the combination of CO 2 and steam succeeded in producing AC with the highest burn-offof 78.57%,a surface area of 869.82 m 2/g,a total pore volume of 0.47 cm 3/g,and leading to maximum methane gas adsorption capacity of 4.500 mol/kg.All types of ACs exhibited the best fit with the Freundlich isotherm model,with the correlation coefficient(R 2)ranging from 0.997 to 0.999,indicating the formation of multilayer adsorption.In addition,the adsorption kinetic data for all ACs followed the pseudo-first-order model showing that the rate of adsorption was dependent on both the adsorbent and the adsorbate and was governed primarily by physical ad-sorption between the pore surface and methane gas.The results of intraparticle diffusion model indicated that the adsorption of methane was affected by both pore diffusion and exterior layer diffusion due to the different adsorption rates.
基金This work was supported by the National Natural Science Foundation of China(Grant No.29676031)
文摘Adsorption/desorption isotherms of supercritical methane on superactivated carbon have been measured in the range of 0–10 MPa and 233–333 K (20 K interval). The reversibility of the physical adsorption process is acknowledged. The heat of adsorption of 16.5 kJ/mol is determined from the isotherms, and a new modeling strategy for isotherms with maximum is presented. The model yields fits to the experimental isotherms with precision of ±2%, maintaining the constancy of the characteristic energy of adsorption. The exponent of the model equation expresses the pore size distribution feature of the adsorbent. The density of the supercritical adsor-bate is evaluated as a parameter of the model. It is shown that the conventional isotherm theory works too at supercritical condition if the limit state of supercritical adsorption is introduced into isotherm modeling.
基金Funded by the National Natural Science Foundation of China(Nos.U1137605,51366014,51466017,and 51566017)the General Program of Yunnan Provincial Applied Fundamental Research(No.2011FZ076)the Scientific Research Training Foundation of Undergraduate(No.ky2014-179)
文摘Walnut-shellactivated carbons(WSACs)were prepared by the KOH chemicalactivation.The effects of carbonization temperature,activation temperature,and ratio of KOH to chars on the pore development of WSACs were investigated.Fourier transform infrared spectroscopy(FTIR),X-ray powder diffraction(XRD),and scanning electron microscopy(SEM)were employed to characterize the microstructure and morphology of WSACs.Methanoladsorption performance onto the optimalWSAC and the coal-based AC were also investigated.The results show that the optimalpreparation conditions are a carbonization temperature of 700 ℃,an activation temperature of 700 ℃,and a mass ratio of 3.The BET surface area,the micropore volume,and the micropore volume percentage of the optimalWASC are 1636 m^2/g,0.641 cm^3/g and 81.97%,respectively.There are a lot of micropores and a certain amount of meso-and macropores.The characteristics of the amorphous state are identified.The results show that the optimalWSAC is favorable for methanoladsorption.The equilibrium adsorption capacity of the optimalWSAC is 248.02mg/g.It is shown that the equilibrium adsorption capacity of the optimalWSAC is almost equivalent to that of the common activated carbon.Therefore the optimalWSAC could be a potentialadsorbent for the solar energy adsorption refrigeration cycle.
文摘In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series of coconut-shell-based granular activated carbons(GACs)with different pore structures were prepared,which were characterized by different methods.The influence of the pore structure on the separation properties was investigated in detail.The results show that one of the carbons prepared(GAC-3)has high CH4 equilibrium adsorption capacity(3.28 mol·kg–1)at 298 K and equilibrium separation coefficient(3.95).The CH_(4)/N_(2)separation on the GACs is controlled by adsorption equilibrium as compared with the dynamic effect.Taking the specific surface area,for example,the common characterization index of the pore structure is not enough to judge the separation performance of the GACs.However,the microstructure of carbon materials plays a decisive role for CH_(4)/N_(2)separation.According to the pore-structure analysis,the effective pore size for the CH_(4)/N_(2)separation is from 0.4 to 0.9 nm,with the optimum effect occurring in the range of 0.6–0.7 nm,followed by the range of 0.7~0.9 nm.Also,a four-bed vacuum pressure swing adsorption process was adopted to evaluate the performance of GACs for the separation of CH4 from nitrogen.
文摘Activated carbon with high specific surface area and considerable mesopores was prepared from bamboo scraps by phosphoric acid activation.The effect of activation conditions was studied.Under the conditions of impregnating bamboo with 80%H3PO_(4) at 80℃ for 9 days and activation at 500℃ for 4 h,the prepared activated carbon had the highest mesopore volume of 0.67 cm3/g,a specific surface area of 1567 m2/g,and the mesopore ratio reached 47.18%.The study on adsorption isotherms of CH4,CO_(2),N2 and O_(2) on the activated carbon were carried out at 298 K.The considerable difference in the adsorption capacity between CO_(2) and the other gases was observed,which would be of interest for the adsorptive separation/purification of gaseous CO_(2) from its mixtures,especially from mixtures with N2 and/or O_(2).
基金Project supported by the Key Fundamental Research Plan (No. G2000048010) and the National Natural Science Foundation of China (Nos. 20236010 20276004).
文摘A combined method of density functional theory (DFT) and statistics integral equation (SIE) for the determina-tion of the pore size distribution (PSD) is developed based on the experimental adsorption data of nitrogen on acti-vated mesocarbon microbead (AMCMB) at 77 K. The pores of AMCMB are described as slit-shaped with PSD. Based on the PSD, methane adsorption and phase behavior are studied by the DFT method. Both nitrogen and methane molecules are modeled as Lennard-Jones spherical molecules, and the well-known Steeles 10-4-3 poten-tial is used to represent the interaction between the fluid molecule and the solid wall. In order to test the combined method and the PSD model, the Intelligent Gravimetric Analyzer (IGA-003) was used to measure the adsorption of methane on the AMCMB. The DFT results are in good agreement with the experimental data. Based on these facts, we predict the adsorption amount of methane, which can reach 32.3 w at 299 K and 4 MPa. The results indicate that the AMCMBs are a good candidate for adsorptive storage of methane and natural gas. In addition, the capillary condensation and hysteresis phenomenon of methane are also observed at 74.05 K.
文摘Lacking in literature is the use of discard coal to produce activated carbon and in its subsequent use in the storage of natural gas. In this study, the characterization and gas storage evaluation of a largely porous activated carbon with large surface area synthesized from discard coal were investigated. Discard coals are waste material generated from coal beneficiation process. In developing the activated carbon, chemical activation route with the use of KOH reagent was applied. The effects of KOH/discard coal weight ratio (1:1, 2.5:1, 4:1), temperature (400-800 ℃) and particle size (0.15-0.25 mm, 0.25-0.5 mm, 0.5-1 mm) on the adsorptive properties of the activated carbon were methodically evaluated and optimized using response surface methodology. The synthesized activated carbon was characterized using BET, SEM/EDS, and XRD. The results showed that for each activation process, the surface area and pore volume of the resulting activated carbon increased with increased temperature and KOH/discard coal weight ratio. The maximum surface area of 1826.41 m2/g, pore volume of 1.252 cm^3/g and pore size of 2.77 nm were obtained at carbonization temperature of 800 ℃ and KOH/discard coal weight ratio of 4:1. Methane and nitrogen adsorption data at high pressure were fitted to Toth isotherm model with a predictive accuracy of about 99%. Adsorption parameters using the Toth model provides useful information in the design of adsorbed natural gas storage system. According to the requirements of adsorbent desired for natural gas storage, it could be stated that the synthesized activated carbon could well be applied for natural gas storage.
基金Project supported by the Open Fund of State Key Laboratory of Photocatalysis,China
文摘Activated carbon(AC) was prepared from surplus sludge using chemical activation method with the assistance of ZnCl2. The influences of process parameters on the AC's specific surface area and adsorption capacity for Pb2+ were examined to optimize these parameters. The optimal conditions for the preparation of AC were determined to be activation temperature of 500 °C, activation time of 1 h, impregnation ratio of 1:1(solid-to-liquid volume) with the 30% ZnCl2 solution(mass fraction), giving the BET surface area of 393.85 m2/g and yield of 30.14% with 33.45% ash. Also, the pyrolysis temperature was found to be the most important parameter in chemical activation. FTIR spectra provided the evidence of some surface structures such as C=C and C—O—C. In the adsorption studies, a rise in solution pH led to a significant increase in adsorption capacity when the pH value varied from 3.0 to 7.0, and the optimal pH for removal of Pb2+ was 7.0. It was observed that the pseudo-second-order equation provided better correlation for the adsorption rate than the pseudo-first-order and the Langmuir model fitted better than the Freundlich model for adsorption isotherm. The adsorption capacity of AC to Pb2+ was 11.75 mg/L at solution pH 7.0, the equilibrium time 480 min and 25 °C. Moreover, the adsorption process is endothermic according to the value of enthalpy change.