The Clegg Pitzer semi empirical thermodynamic equations were applied to the calculation of 1 1 type potassium salt aqueous solution.At 25 ℃ and over the whole concentration range,from 8 single electrolyte solut...The Clegg Pitzer semi empirical thermodynamic equations were applied to the calculation of 1 1 type potassium salt aqueous solution.At 25 ℃ and over the whole concentration range,from 8 single electrolyte solutions (KF,KCl,KBr,KI,KOH,KNO 3,KClO 3,KBrO 3),the parameters W H 2O,KX ,U H 2O,KX ,and B KX were calculated,and then 8 solubility products were calculated.From 9 bi salt saturated aqueous solutions,the parameters W KXY ,U XY ,and Q H 2O,KXY were regressed,the F test was passed.展开更多
The relation between contents of cerium and impurity lead or bismuth to their activity coefficient in Ag, Cu and Zn-base alloy was calculated and analyzed by using the ternary system Chou model. The thermodynamic calc...The relation between contents of cerium and impurity lead or bismuth to their activity coefficient in Ag, Cu and Zn-base alloy was calculated and analyzed by using the ternary system Chou model. The thermodynamic calculation results show that the 'equivalent activity coefficient phenomenon' emerges among the activity coefficient of solute in a certain range of cerium (or at a certain point) for the Ce-Pb-X and Ce-Bi-X (X=Ag, Cu or Zn) ternary alloy system. Under this condition, the activity coefficient of solute has nothing to do with its own concentration. The preliminary theoretical analysis to this phenomenon was also made.展开更多
The infinite diluted activity coefficients of solvents in polyisopropyl methylacrylate was measured using inverse gas chromatography. The solvents used were benzene, toluene, ethyl benzene, methyl acetate, ethyl aceta...The infinite diluted activity coefficients of solvents in polyisopropyl methylacrylate was measured using inverse gas chromatography. The solvents used were benzene, toluene, ethyl benzene, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methanol, ethanol isopropyl alcohol, butyl alcohol, 1,2-dichloroethane, and chloroform. It was observed that the infinite diluted activity coefficient of alcohols are well above those of the other solvents investigated.展开更多
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life(EoL) superalloys, knowledge of their activity coefficien...To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life(EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al_2O_3-SiO_2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al_2O_3-SiO_2 slag. The activity coefficients of NiO and CoO in CaO-Al_2O_3-SiO_2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B =(%CaO)/(%SiO_2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.展开更多
The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 a...The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.展开更多
Geometrical optimization and electrostatic potential calculations have been performed for a series of halogenated hydrocarbons at the HF/Gen-6d level. A number of electrostatic potentials and the statistically based s...Geometrical optimization and electrostatic potential calculations have been performed for a series of halogenated hydrocarbons at the HF/Gen-6d level. A number of electrostatic potentials and the statistically based structural descriptors derived from these electrostatic potentials have been obtained. Multiple linear regression analysis and artificial neural network are employed simultaneously in this paper. The result shows that the parameters derived from electrostatic 2 potentials σtot^2, V s and ∑ Vs^+, together with the molecular volume (Vine) can be used to express the quantitative structure-infinite dilution activity coefficients (γ^∞) relationship of halogenated hydrocarbons in water. The result also demonstrates that the model obtained by using BFGS quasiNewton neural network method has much better predictive capability than that from multiple linear regression. The goodness of the model has been validated through exploring the predictive power for the external test set. The model obtained via neural network may be applied to predict γ^∞ of other halogenated hydrocarbons not present in the data set.展开更多
Based on QSPR of alcohol and ether organic compounds in water,geometrical optimization and electrostatic potential calculations were performed at the HF/6-31G* level for 73 alcohol and ether organic compounds.Linear ...Based on QSPR of alcohol and ether organic compounds in water,geometrical optimization and electrostatic potential calculations were performed at the HF/6-31G* level for 73 alcohol and ether organic compounds.Linear relationships between infinite dilution activity coef-ficient(lnγ∞) of alcohols and ethers in water and theoretical descriptors of the molecular structure were established by multiple regression method.The result shows that the parameters derived from molecular electrostatic potential together with molecular surface area can be preferably used to express the quantitative structure-lnγ∞ relationship of alcohols and ethers in water.This reveals that this model has good predictive capabilities(RCV=0.969).The molecular electrostatic potential has also been proved to have the general applicability in QSPR model of alcohol and ether organic compounds about γ∞ in water.The QSPR model established may provide a new powerful method for predicting γ∞ of organic compounds in aqueous systems.展开更多
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce...A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.展开更多
The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for ...The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.展开更多
It is important to know how ILs(ionic liquids)influence organic reaction.In this paper,activity coefficients at infinite dilution of more than 80 organic compounds in ILs are collected and analyzed systematically.Thro...It is important to know how ILs(ionic liquids)influence organic reaction.In this paper,activity coefficients at infinite dilution of more than 80 organic compounds in ILs are collected and analyzed systematically.Through the study on typical organic reactions happened in ILs,such as Diels-Alder,esterification and Friedel-Crafts reaction,the ratio of activity coefficients at infinite dilution of products and reactants is employed to estimate different effects of different structural ILs on the rate and selectivity of reactions.展开更多
In this paper,the polymer chain of rotator(PCOR) equation of state(EOS) was used together with an EOS/G^E mixing rule(MHV1) and the Wilson's equation as an excess-Gibbs-energy model in the proposed approach to ext...In this paper,the polymer chain of rotator(PCOR) equation of state(EOS) was used together with an EOS/G^E mixing rule(MHV1) and the Wilson's equation as an excess-Gibbs-energy model in the proposed approach to extend the capability and improve the accuracy of the PCOR EOS for predicting the Henry's constant of solutions containing polymers.The results of the proposed method compared with two equation of state(van der Waals and GC-Flory) and three activity coefficient models(UNIFAC,UNIFAC-FV and Entropic-FV) indicated that the PCOR EOS/Wilson's equation provided more accurate results.The interaction parameters of Wilson's equation were fitted with Henry's constant experimental data and the property parameters of PCOR,a and b,were fitted with experimental volume data(Tait equation).As a result,the present work provided a simple and useful model for prediction of Henry's constant for polymer solutions.展开更多
As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO–SiO_(2)slags,this work investigated the activity coefficient of NiO in S...As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO–SiO_(2)slags,this work investigated the activity coefficient of NiO in SiO_(2)-saturated Mn O–Si O_(2)slag and Al_(2)O_(3)-saturated Mn O–SiO_(2)–Al_(2)O_(3)slag at 1623 K with controlled oxygen partial pressure levels of 10^(-7),10^(-6),and 10^(-5)Pa.Results showed that the solubility of nickel oxide in the slags increased with increasing oxygen partial pressure.The nickel in the Mn O–Si O_(2)slag and Mn O–Si O_(2)–Al_(2)O_(3)slag existed as Ni O under experimental conditions.The addition of Al_(2)O_(3)in the Mn O–Si O_(2)slag decreased the dissolution of nickel in the slag and increased the activity coefficient of Ni O.Furthermore,the activity coefficient of Ni O(γN_(i O)),which is solid Ni O,in the Si O_(2)saturated Mn O–Si O_(2)slag and Al_(2)O_(3)saturated Mn O–Si O_(2)–Al_(2)O_(3)slag at 1623 K can be respectively calculated asγN_(i O)=8.58w(Ni O)+3.18 andγN_(i O)=11.06w(Ni O)+4.07,respectively,where w(Ni O)is the Ni O mass fraction in the slag.展开更多
In this study,three semipredictive activity coefficient models:Wilson,non-random-two liquid model(NRTL),and universal quasi-chemical model(UNIQUAC),have been used for modeling vapor-liquid equilibrium properties of te...In this study,three semipredictive activity coefficient models:Wilson,non-random-two liquid model(NRTL),and universal quasi-chemical model(UNIQUAC),have been used for modeling vapor-liquid equilibrium properties of ternary mixtures that include substances found in alcoholic distillation processes of wine and musts.In particular,vapor-liquid equilibrium in ternary mixtures containing water + ethanol + congener has been modeled using parameters obtained from binary and ternary mixture data.The congeners are substances that although present in very low concentrations,of the order of part per million,are important enological parameters.The results given by these different models have been compared with literature data and conclusions about the accuracy of the models studied are drawn,recommending the best models for correlating and predicting phase equilibrium properties of this type of mixtures.展开更多
Activitibs of Si in binary Cu-Si and ternary Cu-Ti-Si melts were measured at 1 550℃ by using a method of chemical equilIbrium between gas and liquid. The activity interaction coefficients of Si in the melts have been...Activitibs of Si in binary Cu-Si and ternary Cu-Ti-Si melts were measured at 1 550℃ by using a method of chemical equilIbrium between gas and liquid. The activity interaction coefficients of Si in the melts have been determined from the experimental data (lny = -5.69. s = 6.69. P2: = -26.22. E; =-43.96) and activity interaction coefficients of Ti in binary Cu-Ti melt at 1550℃ has been estimated from Sommer's data based on the regular solution model (lny =-1 .10. : = 2.95.p:=-2.10).展开更多
A quantitative structure-property relationship (QSPR) study was suggested for the prediction of infinite dilution activity coefficients of halogenated hydrocarbons, γ∞ , in water at 298.15 K. After optimization of...A quantitative structure-property relationship (QSPR) study was suggested for the prediction of infinite dilution activity coefficients of halogenated hydrocarbons, γ∞ , in water at 298.15 K. After optimization of 3D geometry of the halogenated hydrocarbons with semi-empirical quantum chemical calculations at the AM1 level, different descriptors (1514 descriptors) were calculated by the HyperChem and Dragon softwares. A major problem of QSPR is the high dimensionality of the descriptor space; therefore, descriptor selection is the most important step. In this paper, an ant colony optimization (ACO) algorithm was proposed to select the best descriptors. Then the selected descriptors were applied for model development using multiple linear regression. The average absolute relative deviation and correlation coefficient for the training set were obtained as 4.36% and 0.951, respectively, while the corresponding values for the test set were 5.96% and 0.929, respectively. The results showed that the applied procedure is suitable for the prediction of γ∞ of halogenated hydrocarbons in water.展开更多
Based on Miedema's semiempirical formation enthalpy model for binary alloys, free volume theory and ageneral solution model, a new model for prediction of activity interaction coefficient ε is proposed. The calcu...Based on Miedema's semiempirical formation enthalpy model for binary alloys, free volume theory and ageneral solution model, a new model for prediction of activity interaction coefficient ε is proposed. The calculatedresults are better in agreement with the experimental values than the two previous models. The related theories andmodels are discussed according to the degree of agreement with experimental values.展开更多
Extractive agents of extractive distillation separation for mixtures of dichlorobenzene were analyzed and compared, gas-liquid equilibrium data (VLE data) was measured for dichlorobenzene and diphenylamine, the appr...Extractive agents of extractive distillation separation for mixtures of dichlorobenzene were analyzed and compared, gas-liquid equilibrium data (VLE data) was measured for dichlorobenzene and diphenylamine, the appropriate extractive agent was selected by relatively volatility, the temperature was studied on the effect of extractive separation. VLE data was measured for dichlorobenzene, the parameters were simulated in Wilson equation. The infinite dilute activity coefficient of dichlorobenzene in diphenylamine were measured by chromatogram apparatus, the model parameters were correlated by the single parameter method for dichlorobenzene and diphenyl -amine, VLE data of m-dichlorobenzene-p- dichlorobenzene -o-dichlorobenzene-diphenylamine system was measured and calculated by six part model parameters. The results of correlation and experiment were provided a basis for study of extractive distillation simulation and experiment in this work.展开更多
In this paper, we calculated 37 structural descriptors of 174 organic compounds. The 154 molecules were used to derive quantitative structure - infinite dilution activity confficient relationship by genetic programmin...In this paper, we calculated 37 structural descriptors of 174 organic compounds. The 154 molecules were used to derive quantitative structure - infinite dilution activity confficient relationship by genetic programming, the other 20 compounds were used to test the model. The result showed that molecular partition property and three-dimensional structural descriptors have significant influence on the infinite dilution activity coefficients.展开更多
A rigorous approach is proposed to model the mean ion activity coefficient for strong electrolyte systems using the Poisson-Boltzmann equation. An effective screening radius similar to the Debye decay length is introd...A rigorous approach is proposed to model the mean ion activity coefficient for strong electrolyte systems using the Poisson-Boltzmann equation. An effective screening radius similar to the Debye decay length is introduced to define the local composition and new boundary conditions for the central ion. The crystallographic ion size is also considered in the activity coefficient expressions derived and non-electrostatic contributions are neglected. The model is presented for aqueous strong electrolytes and compared with the classical Debye-Hfickel (DH) limiting law for dilute solutions. The radial distribution function is compared with the DH and Monte Carlo studies. The mean ion activity coefficients are calculated for 1:1 aqueous solutions containing strong electrolytes composed of alkali halides. The individual ion activity coefficients and mean ion activity coefficients in mixed sol- vents are predicted with the new equations.展开更多
Accurate calculation of thermodynamic properties of electrolyte solution is essential in the design and optimization of many processes in chemical industries. A new electrolyte equation of state is developed for aqueo...Accurate calculation of thermodynamic properties of electrolyte solution is essential in the design and optimization of many processes in chemical industries. A new electrolyte equation of state is developed for aqueous electrolyte solutions. The Carnahan-Starling repulsive model and an attractive term based on square-well potential are adopted to represent the short range interaction of ionic and molecular species in the new electrolyte EOS. The long range interaction of ionic species is expressed by a simplified version of Mean Spherical Approximation theory (MSA). The new equation of state also contains a Born term for charging free energy of ions. Three adjustable parameters of new eEOS per each electrolyte solution are size parameter, square-well potential depth and square-well potential interaction range. The new eEOS is applied for correlation of mean activity coefficient and prediction of osmotic coefficient of various strong aqueous electrolyte solutions at 25℃ and 0.1 MPa. In addition, the extension of the new eEOS for correlation of mean activity coefficient and solution density of a few aqueous electrolytes at temperature range of 0 to 100℃ is carried out.展开更多
文摘The Clegg Pitzer semi empirical thermodynamic equations were applied to the calculation of 1 1 type potassium salt aqueous solution.At 25 ℃ and over the whole concentration range,from 8 single electrolyte solutions (KF,KCl,KBr,KI,KOH,KNO 3,KClO 3,KBrO 3),the parameters W H 2O,KX ,U H 2O,KX ,and B KX were calculated,and then 8 solubility products were calculated.From 9 bi salt saturated aqueous solutions,the parameters W KXY ,U XY ,and Q H 2O,KXY were regressed,the F test was passed.
文摘The relation between contents of cerium and impurity lead or bismuth to their activity coefficient in Ag, Cu and Zn-base alloy was calculated and analyzed by using the ternary system Chou model. The thermodynamic calculation results show that the 'equivalent activity coefficient phenomenon' emerges among the activity coefficient of solute in a certain range of cerium (or at a certain point) for the Ce-Pb-X and Ce-Bi-X (X=Ag, Cu or Zn) ternary alloy system. Under this condition, the activity coefficient of solute has nothing to do with its own concentration. The preliminary theoretical analysis to this phenomenon was also made.
基金Supported by the National Natural Science Foundation of China(No.29736170,No.29976011)
文摘The infinite diluted activity coefficients of solvents in polyisopropyl methylacrylate was measured using inverse gas chromatography. The solvents used were benzene, toluene, ethyl benzene, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methanol, ethanol isopropyl alcohol, butyl alcohol, 1,2-dichloroethane, and chloroform. It was observed that the infinite diluted activity coefficient of alcohols are well above those of the other solvents investigated.
基金the support of a scholarship provided by the Japan Society for the Promotion of Science(No. H26-3293)the scholarship provided by the Ministry of Education,Culture,Sports,Science and Technology,Japan(Registered number: 123032) during his doctor course
文摘To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life(EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al_2O_3-SiO_2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al_2O_3-SiO_2 slag. The activity coefficients of NiO and CoO in CaO-Al_2O_3-SiO_2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B =(%CaO)/(%SiO_2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.
文摘The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.
文摘Geometrical optimization and electrostatic potential calculations have been performed for a series of halogenated hydrocarbons at the HF/Gen-6d level. A number of electrostatic potentials and the statistically based structural descriptors derived from these electrostatic potentials have been obtained. Multiple linear regression analysis and artificial neural network are employed simultaneously in this paper. The result shows that the parameters derived from electrostatic 2 potentials σtot^2, V s and ∑ Vs^+, together with the molecular volume (Vine) can be used to express the quantitative structure-infinite dilution activity coefficients (γ^∞) relationship of halogenated hydrocarbons in water. The result also demonstrates that the model obtained by using BFGS quasiNewton neural network method has much better predictive capability than that from multiple linear regression. The goodness of the model has been validated through exploring the predictive power for the external test set. The model obtained via neural network may be applied to predict γ^∞ of other halogenated hydrocarbons not present in the data set.
文摘Based on QSPR of alcohol and ether organic compounds in water,geometrical optimization and electrostatic potential calculations were performed at the HF/6-31G* level for 73 alcohol and ether organic compounds.Linear relationships between infinite dilution activity coef-ficient(lnγ∞) of alcohols and ethers in water and theoretical descriptors of the molecular structure were established by multiple regression method.The result shows that the parameters derived from molecular electrostatic potential together with molecular surface area can be preferably used to express the quantitative structure-lnγ∞ relationship of alcohols and ethers in water.This reveals that this model has good predictive capabilities(RCV=0.969).The molecular electrostatic potential has also been proved to have the general applicability in QSPR model of alcohol and ether organic compounds about γ∞ in water.The QSPR model established may provide a new powerful method for predicting γ∞ of organic compounds in aqueous systems.
基金Projects(51908557,51378510)supported by the National Natural Science Foundation of China。
文摘A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.
基金the National-Natural Science Foundation of China (No.20476059, No.20276037) and 863 Hi-Technology Research and Development Program of China (2004 AA616040).
文摘The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.
基金Supported by the National Natural Science Foundation of China(21176248)
文摘It is important to know how ILs(ionic liquids)influence organic reaction.In this paper,activity coefficients at infinite dilution of more than 80 organic compounds in ILs are collected and analyzed systematically.Through the study on typical organic reactions happened in ILs,such as Diels-Alder,esterification and Friedel-Crafts reaction,the ratio of activity coefficients at infinite dilution of products and reactants is employed to estimate different effects of different structural ILs on the rate and selectivity of reactions.
基金financial support provided by Islamic Azad University of Mahshahr Branch,Iran
文摘In this paper,the polymer chain of rotator(PCOR) equation of state(EOS) was used together with an EOS/G^E mixing rule(MHV1) and the Wilson's equation as an excess-Gibbs-energy model in the proposed approach to extend the capability and improve the accuracy of the PCOR EOS for predicting the Henry's constant of solutions containing polymers.The results of the proposed method compared with two equation of state(van der Waals and GC-Flory) and three activity coefficient models(UNIFAC,UNIFAC-FV and Entropic-FV) indicated that the PCOR EOS/Wilson's equation provided more accurate results.The interaction parameters of Wilson's equation were fitted with Henry's constant experimental data and the property parameters of PCOR,a and b,were fitted with experimental volume data(Tait equation).As a result,the present work provided a simple and useful model for prediction of Henry's constant for polymer solutions.
基金financially supported by the National Natural Science Foundation of China(No.51704038)。
文摘As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO–SiO_(2)slags,this work investigated the activity coefficient of NiO in SiO_(2)-saturated Mn O–Si O_(2)slag and Al_(2)O_(3)-saturated Mn O–SiO_(2)–Al_(2)O_(3)slag at 1623 K with controlled oxygen partial pressure levels of 10^(-7),10^(-6),and 10^(-5)Pa.Results showed that the solubility of nickel oxide in the slags increased with increasing oxygen partial pressure.The nickel in the Mn O–Si O_(2)slag and Mn O–Si O_(2)–Al_(2)O_(3)slag existed as Ni O under experimental conditions.The addition of Al_(2)O_(3)in the Mn O–Si O_(2)slag decreased the dissolution of nickel in the slag and increased the activity coefficient of Ni O.Furthermore,the activity coefficient of Ni O(γN_(i O)),which is solid Ni O,in the Si O_(2)saturated Mn O–Si O_(2)slag and Al_(2)O_(3)saturated Mn O–Si O_(2)–Al_(2)O_(3)slag at 1623 K can be respectively calculated asγN_(i O)=8.58w(Ni O)+3.18 andγN_(i O)=11.06w(Ni O)+4.07,respectively,where w(Ni O)is the Ni O mass fraction in the slag.
基金Supported by the Direction of Research of the University of La Serena-Chile (220-2-05 and 220-2-21)the National Council for Scientific and Technological Research,CONICYT (FONDECYT 3020020)
文摘In this study,three semipredictive activity coefficient models:Wilson,non-random-two liquid model(NRTL),and universal quasi-chemical model(UNIQUAC),have been used for modeling vapor-liquid equilibrium properties of ternary mixtures that include substances found in alcoholic distillation processes of wine and musts.In particular,vapor-liquid equilibrium in ternary mixtures containing water + ethanol + congener has been modeled using parameters obtained from binary and ternary mixture data.The congeners are substances that although present in very low concentrations,of the order of part per million,are important enological parameters.The results given by these different models have been compared with literature data and conclusions about the accuracy of the models studied are drawn,recommending the best models for correlating and predicting phase equilibrium properties of this type of mixtures.
文摘Activitibs of Si in binary Cu-Si and ternary Cu-Ti-Si melts were measured at 1 550℃ by using a method of chemical equilIbrium between gas and liquid. The activity interaction coefficients of Si in the melts have been determined from the experimental data (lny = -5.69. s = 6.69. P2: = -26.22. E; =-43.96) and activity interaction coefficients of Ti in binary Cu-Ti melt at 1550℃ has been estimated from Sommer's data based on the regular solution model (lny =-1 .10. : = 2.95.p:=-2.10).
文摘A quantitative structure-property relationship (QSPR) study was suggested for the prediction of infinite dilution activity coefficients of halogenated hydrocarbons, γ∞ , in water at 298.15 K. After optimization of 3D geometry of the halogenated hydrocarbons with semi-empirical quantum chemical calculations at the AM1 level, different descriptors (1514 descriptors) were calculated by the HyperChem and Dragon softwares. A major problem of QSPR is the high dimensionality of the descriptor space; therefore, descriptor selection is the most important step. In this paper, an ant colony optimization (ACO) algorithm was proposed to select the best descriptors. Then the selected descriptors were applied for model development using multiple linear regression. The average absolute relative deviation and correlation coefficient for the training set were obtained as 4.36% and 0.951, respectively, while the corresponding values for the test set were 5.96% and 0.929, respectively. The results showed that the applied procedure is suitable for the prediction of γ∞ of halogenated hydrocarbons in water.
文摘Based on Miedema's semiempirical formation enthalpy model for binary alloys, free volume theory and ageneral solution model, a new model for prediction of activity interaction coefficient ε is proposed. The calculatedresults are better in agreement with the experimental values than the two previous models. The related theories andmodels are discussed according to the degree of agreement with experimental values.
文摘Extractive agents of extractive distillation separation for mixtures of dichlorobenzene were analyzed and compared, gas-liquid equilibrium data (VLE data) was measured for dichlorobenzene and diphenylamine, the appropriate extractive agent was selected by relatively volatility, the temperature was studied on the effect of extractive separation. VLE data was measured for dichlorobenzene, the parameters were simulated in Wilson equation. The infinite dilute activity coefficient of dichlorobenzene in diphenylamine were measured by chromatogram apparatus, the model parameters were correlated by the single parameter method for dichlorobenzene and diphenyl -amine, VLE data of m-dichlorobenzene-p- dichlorobenzene -o-dichlorobenzene-diphenylamine system was measured and calculated by six part model parameters. The results of correlation and experiment were provided a basis for study of extractive distillation simulation and experiment in this work.
文摘In this paper, we calculated 37 structural descriptors of 174 organic compounds. The 154 molecules were used to derive quantitative structure - infinite dilution activity confficient relationship by genetic programming, the other 20 compounds were used to test the model. The result showed that molecular partition property and three-dimensional structural descriptors have significant influence on the infinite dilution activity coefficients.
基金Supported by the National Natural Science Foundation of China(21206010)
文摘A rigorous approach is proposed to model the mean ion activity coefficient for strong electrolyte systems using the Poisson-Boltzmann equation. An effective screening radius similar to the Debye decay length is introduced to define the local composition and new boundary conditions for the central ion. The crystallographic ion size is also considered in the activity coefficient expressions derived and non-electrostatic contributions are neglected. The model is presented for aqueous strong electrolytes and compared with the classical Debye-Hfickel (DH) limiting law for dilute solutions. The radial distribution function is compared with the DH and Monte Carlo studies. The mean ion activity coefficients are calculated for 1:1 aqueous solutions containing strong electrolytes composed of alkali halides. The individual ion activity coefficients and mean ion activity coefficients in mixed sol- vents are predicted with the new equations.
文摘Accurate calculation of thermodynamic properties of electrolyte solution is essential in the design and optimization of many processes in chemical industries. A new electrolyte equation of state is developed for aqueous electrolyte solutions. The Carnahan-Starling repulsive model and an attractive term based on square-well potential are adopted to represent the short range interaction of ionic and molecular species in the new electrolyte EOS. The long range interaction of ionic species is expressed by a simplified version of Mean Spherical Approximation theory (MSA). The new equation of state also contains a Born term for charging free energy of ions. Three adjustable parameters of new eEOS per each electrolyte solution are size parameter, square-well potential depth and square-well potential interaction range. The new eEOS is applied for correlation of mean activity coefficient and prediction of osmotic coefficient of various strong aqueous electrolyte solutions at 25℃ and 0.1 MPa. In addition, the extension of the new eEOS for correlation of mean activity coefficient and solution density of a few aqueous electrolytes at temperature range of 0 to 100℃ is carried out.