An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum i...An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum incident pump power of 11.4 W, corresponding to a slope efficiency of 34.5%. The beam quality factor M2 is 1.16, and the output beam is close to fundamental TEMoo. In the case of the CWML operation, a stable pulse train is generated with an average output power up to 3.41 W with a slope efficiency of 34.3% at the incident pump power of 11.4 W and a pulse duration of 294ps at a repetition rate of 81.92MHz. In addition, the maximum single pulse energy is 41.6nJ.展开更多
The influence of actively mode-locked Erbium-Doped Fiber Laser (EDFL) cavity length variation on the noises of an optical pulse train is investigated, in theory and in MATLAB simulation. Using a simple model, the no...The influence of actively mode-locked Erbium-Doped Fiber Laser (EDFL) cavity length variation on the noises of an optical pulse train is investigated, in theory and in MATLAB simulation. Using a simple model, the noise characre, tics of the output pulse train are studied. The results show that the noises of the output pulse train increase with the increasing of the variation of the cavity length. The theory analysis and the simulation results agree well. This result is very significant for us to improve the reliability and the stability of the actively mode-locked fiber laser.展开更多
Dissipative soliton resonance (DSR) is a phenomenon where the energy of a soliton in a dissipative system increases without limit at certain values of the system parameters. Using the method of collective variable app...Dissipative soliton resonance (DSR) is a phenomenon where the energy of a soliton in a dissipative system increases without limit at certain values of the system parameters. Using the method of collective variable approach, we have found an approximate relation between the parameters of the normalized complex cubic-quintic Ginzburg-Landau equation where the resonance manifests itself. Comparisons between the results obtained by collective variable approach, and those obtained by the method of moments show good qualitative agreement. This choice also helps to see the influence of the active terms on the resonance curve, so can be very useful in constructing passively mode-locked laser that generate solitons with the highest possible energies.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant Nos 2013M540288 and 2015M570290+2 种基金the Fundamental Research Funds for the Central Universities Grant under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085
文摘An actively mode-locked Ho: YAG laser pumped by a diode-pumped Tin-doped fiber laser is reported. For the cw operation, we obtain the maximum output power of 3.43 W with a central wavelength 2022.2nm at the maximum incident pump power of 11.4 W, corresponding to a slope efficiency of 34.5%. The beam quality factor M2 is 1.16, and the output beam is close to fundamental TEMoo. In the case of the CWML operation, a stable pulse train is generated with an average output power up to 3.41 W with a slope efficiency of 34.3% at the incident pump power of 11.4 W and a pulse duration of 294ps at a repetition rate of 81.92MHz. In addition, the maximum single pulse energy is 41.6nJ.
基金This workis supported by National Nature Science Foundation of China (No.60372061) ,Science and Technology Development Planning Project of JilinProvince ((2004) (No.1271)) .
文摘The influence of actively mode-locked Erbium-Doped Fiber Laser (EDFL) cavity length variation on the noises of an optical pulse train is investigated, in theory and in MATLAB simulation. Using a simple model, the noise characre, tics of the output pulse train are studied. The results show that the noises of the output pulse train increase with the increasing of the variation of the cavity length. The theory analysis and the simulation results agree well. This result is very significant for us to improve the reliability and the stability of the actively mode-locked fiber laser.
文摘Dissipative soliton resonance (DSR) is a phenomenon where the energy of a soliton in a dissipative system increases without limit at certain values of the system parameters. Using the method of collective variable approach, we have found an approximate relation between the parameters of the normalized complex cubic-quintic Ginzburg-Landau equation where the resonance manifests itself. Comparisons between the results obtained by collective variable approach, and those obtained by the method of moments show good qualitative agreement. This choice also helps to see the influence of the active terms on the resonance curve, so can be very useful in constructing passively mode-locked laser that generate solitons with the highest possible energies.