Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have rece...Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.展开更多
This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<s...This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<sub>∞</sub> control strategy, the optimal state feedback controller is derived by solving the linear matrix inequality problem for controller saturation. Case studies show that the proposed controller is capable of stabilizing the closed-loop system with good control performance and effectively suppressing vibrations in building structures under unknown external excitation. When compared to controllers that do not consider saturation, the proposed controller requires lower gain and results in reduced energy consumption. The research findings provide valuable insights for addressing real-world building structure control problems, contributing to both theoretical significance and practical applications.展开更多
This paper puts forward the concept of double semi-active vibration isolation systemutilizing the 'on-off' active damper and the 'on-off' active spring. Applying KBM Asympto-tic method, the vibration ...This paper puts forward the concept of double semi-active vibration isolation systemutilizing the 'on-off' active damper and the 'on-off' active spring. Applying KBM Asympto-tic method, the vibration of the system in case of weak semi-active control is studied. ln pcactice, there are two types of vibration isolation. One is to isolate the transmitting of the cyclicunbalanced force generated by the revolving machine to the surroundings. The other is to isolatethe transmitting of the vibration displacement of the surroundings to precise equipment. Deduc-ing the influence of the roadway unflatness on vehicles also belongs to this type. For the firsttype of isolation system, the damper always dissipates energy, and the total work done by the spring in a vibration cycle is zero. For the second type of isolation system, the work done by the damper sometimes is positive, and sometimes negative. The damper dissipates less energy. The work done by the spring in a vibration cycle isn't zero, and it is usually positive. ln thispaper, the vibration isolation is refered to the second type. .展开更多
To improve the performance of an active mass damper control system,the controller should be designed based on a reduced-order model. An improved method based on balanced truncation method was proposed to reduce the di...To improve the performance of an active mass damper control system,the controller should be designed based on a reduced-order model. An improved method based on balanced truncation method was proposed to reduce the dimension of high-rise buildings,and was compared with other widely used reduction methods by using a framework with ten floors. This optimized method has improvement of reduction process and choice of the order. Based on the reduced-order model obtained by the improved method and pole-assignment algorithm,a controller was designed. Finally,a comparative analysis of structural responses,transfer functions,and poles was conducted on an actual high-rise building. The results show the effectiveness of the improved method.展开更多
In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope...In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.展开更多
文摘Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.
文摘This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<sub>∞</sub> control strategy, the optimal state feedback controller is derived by solving the linear matrix inequality problem for controller saturation. Case studies show that the proposed controller is capable of stabilizing the closed-loop system with good control performance and effectively suppressing vibrations in building structures under unknown external excitation. When compared to controllers that do not consider saturation, the proposed controller requires lower gain and results in reduced energy consumption. The research findings provide valuable insights for addressing real-world building structure control problems, contributing to both theoretical significance and practical applications.
文摘This paper puts forward the concept of double semi-active vibration isolation systemutilizing the 'on-off' active damper and the 'on-off' active spring. Applying KBM Asympto-tic method, the vibration of the system in case of weak semi-active control is studied. ln pcactice, there are two types of vibration isolation. One is to isolate the transmitting of the cyclicunbalanced force generated by the revolving machine to the surroundings. The other is to isolatethe transmitting of the vibration displacement of the surroundings to precise equipment. Deduc-ing the influence of the roadway unflatness on vehicles also belongs to this type. For the firsttype of isolation system, the damper always dissipates energy, and the total work done by the spring in a vibration cycle is zero. For the second type of isolation system, the work done by the damper sometimes is positive, and sometimes negative. The damper dissipates less energy. The work done by the spring in a vibration cycle isn't zero, and it is usually positive. ln thispaper, the vibration isolation is refered to the second type. .
文摘To improve the performance of an active mass damper control system,the controller should be designed based on a reduced-order model. An improved method based on balanced truncation method was proposed to reduce the dimension of high-rise buildings,and was compared with other widely used reduction methods by using a framework with ten floors. This optimized method has improvement of reduction process and choice of the order. Based on the reduced-order model obtained by the improved method and pole-assignment algorithm,a controller was designed. Finally,a comparative analysis of structural responses,transfer functions,and poles was conducted on an actual high-rise building. The results show the effectiveness of the improved method.
基金supported by the Foundation of National Key Laboratory on Ship Vibration and Noise(No. 614220400307)the National Natural Science Foundation of China(No.11872207)+1 种基金the Aeronautical Science Foundation of China(No. 20180952007)the Foundation of State Key Laboratory of Mechanics and Control of Mechanical Structures(No. MCMS-I-0520G01)
文摘In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.