期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm
1
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization Improved PSO algorithm
下载PDF
New protocols for non-orthogonal quantum key distribution
2
作者 周媛媛 周学军 +1 位作者 田培根 王瑛剑 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期88-93,共6页
Combining the passive decoy-state idea with the active decoy-state idea, a non-orthogonal (SARG04) decoy-state protocol with one vacuum and two weak decoy states is introduced based on a heralded pair coherent state... Combining the passive decoy-state idea with the active decoy-state idea, a non-orthogonal (SARG04) decoy-state protocol with one vacuum and two weak decoy states is introduced based on a heralded pair coherent state photon source for quantum key distribution. Two special cases of this protocol are deduced, i.e., a one-vacuum-and-one-weak-decoy-state protocol and a one-weak-decoy-state protocol. In these protocols, the sender prepares decoy states actively, which avoids the crude estimation of parameters in the SARG04 passive decoy-state method. With the passive decoy-state idea, the detection events on Bob's side that are non-triggered on Alice's side are not discarded, but used to estimate the fractions of single-photon and two-photon pulses, which offsets the limitation of the detector's low efficiency and overcomes the shortcoming that the performance of the active decoy-state protocol critically depends on the efficiency of detector. The simulation results show that the combination of the active and passive decoy-state ideas increases the key generation rate. With a one-vacuum-and-two-weak-decoy-state protocol, one can achieve a key generation rate that is close to the theoretical limit of an infinite decoy-state protocol. The performance of the other two protocols is a little less than with the former, but the implementation is easier. Under the same condition of implementation, higher key rates can be obtained with our protocols than with existing methods. 展开更多
关键词 quantum key distribution non-orthogonal encoding protocol active decoy state passive decoy state
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部