In this paper,we report the study of surface-enhanced Raman Scattering of C_(60)films on roughed Ag,Cu and glass surface.The experiment results indicate that the C_(60)films on Ag substrate possess large enhance effec...In this paper,we report the study of surface-enhanced Raman Scattering of C_(60)films on roughed Ag,Cu and glass surface.The experiment results indicate that the C_(60)films on Ag substrate possess large enhance effect.An explanation of the enhancement with roughed glass surface is proposed based on waveguide Raman Scattering.展开更多
Maillard reaction is a non-enzymatic browning reaction and its products(MRPs)have been proven to possess antioxidant properties.This research aimed to produce a fish gelatin-based packaging incorporated with MRPs to r...Maillard reaction is a non-enzymatic browning reaction and its products(MRPs)have been proven to possess antioxidant properties.This research aimed to produce a fish gelatin-based packaging incorporated with MRPs to retard lipid oxidation in chicken skin oil(CSO)during storage at ambient temperature(28℃–30℃).MRPs produced from fish gelatin and fructose(1:1,90℃,pH 11)showed the highest antioxidant properties compared to those prepared under other conditions.Different glycerol/MRPs ratios(30:0,25:5,20:10,15:15,10:20,5:25,0:30)were incorporated into the film and resulting films were characterized.Glycerol/MRPs at 10:20 ratio was chosen to add into the film prior to bag preparation via heat sealing method.CSO packed in the bag was monitored for lipid hydrolysis and oxidation during 15 days of storage(30℃±0.5℃,RH 52%±5%).After 15 days,quality deterioration was lower in CSO packed in the prepared gelatin bag as evidenced by lower FFA,TBARS,and volatile compounds in comparison with CSO packed in LDPE bag.Fish gelatin film added with MRPs possessed an excellent water vapor barrier property(WV-BP).This finding indicated that MRPs could be used to substitute glycerol and simultaneously could serve as antioxidants for the developed active bag.The novel packaging can be a potential alternative packaging for retarding lipid oxidation of lipid or fatty foods.展开更多
The present article deals with the effective use of film clips in the classroom to encourage active viewing. It argues that viewing material and activities should meet the needs and interest of learners and lead towar...The present article deals with the effective use of film clips in the classroom to encourage active viewing. It argues that viewing material and activities should meet the needs and interest of learners and lead towards a product that can benefit their language-learning capabilities. The selection of right film clips and the designing of appropriate tasks are discussed in detail.展开更多
Electrochemical energy storage systems with high specific energy and power as well as long cyclic stability attract increasing attention in new energy technologies. The principles for rational design of electrodes are...Electrochemical energy storage systems with high specific energy and power as well as long cyclic stability attract increasing attention in new energy technologies. The principles for rational design of electrodes are discussed to reduce the activation, concentration, and resistance overpotentials and improve the active ma- terial efficiency in order to simultaneously achieve high specific energy and power. Three dimensional (3D) nanocomposites are currently considered as promising electrode materials due to their large surface area, reduced electronic and ionic diffusion distances, and synergistic effects. This paper reviews the most recent progress on the synthesis and application of 3D thin film nanoelectrode arrays based on aligned carbon nan- otubes (ACNTs) directly grown on metal foils for energy storages and special attentions are paid on our own representative works. These novel 3D nanoelectrode arrays on metal foil exhibit improved electrochemical performances in terms of specific energy, specific power and cyclic stability due to their unique structures. In this active materials coated ACNTs over conductive substrate structures, each component is tailored to address a different demand. The electrochemical active material is used to store energy, while the ACNTs are employed to provide a large surface area to support the active material and nanocable arrays to facilitate the electron transport. The thin film of active materials can not only reduce ion transport resistance by shorten- ing the diffusion length but also make the film elastic enough to tolerate significant volume changes during charge and discharge cycles. The conductive substrate is used as the current collector and the direct contact of the ACNT arrays with the substrate reduces significantly the contact resistance. The principles obtained from ACNT based electrodes are extended to aligned graphene based electrodes. Similar improvements have been achieved which confirms the reliability of the principles obtained. In addition, we also discuss and view the ongoing trends in development of aligned carbon nanostructures based electrodes for energy storage.展开更多
A crosslinked chitosan film with α-tocopherol was produced by a solution casting method. The appearance, mechanical properties, morphology, barrier properties and release kinetics of the α-tocopherol were evaluated....A crosslinked chitosan film with α-tocopherol was produced by a solution casting method. The appearance, mechanical properties, morphology, barrier properties and release kinetics of the α-tocopherol were evaluated. The addition of glutaraldehyde and α-tocopherol decreased the lightness and greenness and increased the yellowness of the chitosan-based film. Moreover, it also affected the compatibility of the film due to a decrease in the opacity values. The elongation at break(EB) and tensile strength(TS) values of the film decreased when the glutaraldehyde and α-tocopherol were added. In contrast, the Young’s modulus(YM) values increased. SEM micrographs showed coarse spots and pores on the surface and cross-section of the film when compared with the chitosan film. Based on the results, it was indicated that the chitosan structure was disconnected by the α-tocopherol, and the glutaraldehyde as a crosslinking agent generated a link between the chitosan network, which could be the cause of the reduced flexibility and the increased surface roughness of the film. However, the glutaraldehyde and α-tocopherol did not result in a significant difference in water vapour permeability(WVP) values. The glutaraldehyde influenced the release kinetics of the α-tocopherol as seen by the decrease of the diffusion coefficient values that were calculated using the Fickian diffusion model.展开更多
The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability ...The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability s<sub>o</sub> increases linearly from 0 to 0.03 as normal component of translational energy of the molecuar beam E<sub>n</sub> increases from 11.00 to 19.91 kcal/mol for N<sub>2</sub>/Ni system and S<sub>0</sub> from 0 to 0. 10 as E<sub>n</sub> from 10. 40 to 19.91 kcal/mol for N<sub>2</sub>/La system. The apparent activation energy △E are 6.16 kcal/mol and 5.30 kcal/mol for N<sub>2</sub>/Ni and N<sub>2</sub>/La systems respectively.展开更多
This study discusses on the tailoring of cinnamon oil emulsion-based gelatin edible films that can encapsulate,protect and release bioactive compounds in food packaging applications.The effect of this cinnamon oil fil...This study discusses on the tailoring of cinnamon oil emulsion-based gelatin edible films that can encapsulate,protect and release bioactive compounds in food packaging applications.The effect of this cinnamon oil film for shelf-life extension and storage stabilities of wax apples(Syzygium samarangense L.)was evaluated over 12-day storage at refrigerated temperature(5℃).Emulsion of cinnamon oil and surfactant at different ratios of 70:30(ME1),60:40(ME2)and 50:50(ME3)was incorporated into the films and the interactions between the emulsion and polymeric structure in films were analysed through physical,morphological and functional properties.The cinnamon oil emulsion-based gelatin films with a ratio of 70:30 exhibited significant increase in mechanical,water barrier,antioxidant activity and thermal stability.The increase in antioxidant activity of cinnamon oil films revealed that encapsulation of cinnamon oil in gelatin matrix better retains the bioactive compounds for food packaging applications.Cinnamon oil emulsion-based films significantly lowered the weight loss of wax apples(12.43%)compared to the control(unwrapped)wax apples(26.40%).Interestingly,this research indicates that encapsulation of bioactive compounds is governed by the ratio of oil to surfactant mixture in emulsion.It was proved that the film microemulsion with the 70:30 ratio of oil to surfactant(FME 70)have better overall performances as compared to the control(gelatin films)due to hydrogen and hydrophobic interactions with protein network of gelatin.In conclusion,cinnamon oil emulsion-based films could enhance and modify the functionality of protein-based films creating a biodegradable,sustainable and cost-effective food packaging materials.展开更多
The catalytic activity of polycobaltprotoporphyrin(PCoPP)was compared with adsorbed cobaltprotoporphyrin monolayer.The results have shown that PCoPP film shows higher catalytic activity and stability than monolayer on...The catalytic activity of polycobaltprotoporphyrin(PCoPP)was compared with adsorbed cobaltprotoporphyrin monolayer.The results have shown that PCoPP film shows higher catalytic activity and stability than monolayer on glass carbon electrode in both alkaline and acid solution. Catalytic activity of PCoPP goes through a maximum with increase of film thickness.A model was proposed to explain such dependence.The effect of film thickness and solution pH on the stability of PCoPP film was studied.展开更多
文摘In this paper,we report the study of surface-enhanced Raman Scattering of C_(60)films on roughed Ag,Cu and glass surface.The experiment results indicate that the C_(60)films on Ag substrate possess large enhance effect.An explanation of the enhancement with roughed glass surface is proposed based on waveguide Raman Scattering.
文摘Maillard reaction is a non-enzymatic browning reaction and its products(MRPs)have been proven to possess antioxidant properties.This research aimed to produce a fish gelatin-based packaging incorporated with MRPs to retard lipid oxidation in chicken skin oil(CSO)during storage at ambient temperature(28℃–30℃).MRPs produced from fish gelatin and fructose(1:1,90℃,pH 11)showed the highest antioxidant properties compared to those prepared under other conditions.Different glycerol/MRPs ratios(30:0,25:5,20:10,15:15,10:20,5:25,0:30)were incorporated into the film and resulting films were characterized.Glycerol/MRPs at 10:20 ratio was chosen to add into the film prior to bag preparation via heat sealing method.CSO packed in the bag was monitored for lipid hydrolysis and oxidation during 15 days of storage(30℃±0.5℃,RH 52%±5%).After 15 days,quality deterioration was lower in CSO packed in the prepared gelatin bag as evidenced by lower FFA,TBARS,and volatile compounds in comparison with CSO packed in LDPE bag.Fish gelatin film added with MRPs possessed an excellent water vapor barrier property(WV-BP).This finding indicated that MRPs could be used to substitute glycerol and simultaneously could serve as antioxidants for the developed active bag.The novel packaging can be a potential alternative packaging for retarding lipid oxidation of lipid or fatty foods.
文摘The present article deals with the effective use of film clips in the classroom to encourage active viewing. It argues that viewing material and activities should meet the needs and interest of learners and lead towards a product that can benefit their language-learning capabilities. The selection of right film clips and the designing of appropriate tasks are discussed in detail.
基金support from NTNU Nanolab and financial supports from VISTA, Zhengzhou Research Institute of Chalco and Norwegian research council
文摘Electrochemical energy storage systems with high specific energy and power as well as long cyclic stability attract increasing attention in new energy technologies. The principles for rational design of electrodes are discussed to reduce the activation, concentration, and resistance overpotentials and improve the active ma- terial efficiency in order to simultaneously achieve high specific energy and power. Three dimensional (3D) nanocomposites are currently considered as promising electrode materials due to their large surface area, reduced electronic and ionic diffusion distances, and synergistic effects. This paper reviews the most recent progress on the synthesis and application of 3D thin film nanoelectrode arrays based on aligned carbon nan- otubes (ACNTs) directly grown on metal foils for energy storages and special attentions are paid on our own representative works. These novel 3D nanoelectrode arrays on metal foil exhibit improved electrochemical performances in terms of specific energy, specific power and cyclic stability due to their unique structures. In this active materials coated ACNTs over conductive substrate structures, each component is tailored to address a different demand. The electrochemical active material is used to store energy, while the ACNTs are employed to provide a large surface area to support the active material and nanocable arrays to facilitate the electron transport. The thin film of active materials can not only reduce ion transport resistance by shorten- ing the diffusion length but also make the film elastic enough to tolerate significant volume changes during charge and discharge cycles. The conductive substrate is used as the current collector and the direct contact of the ACNT arrays with the substrate reduces significantly the contact resistance. The principles obtained from ACNT based electrodes are extended to aligned graphene based electrodes. Similar improvements have been achieved which confirms the reliability of the principles obtained. In addition, we also discuss and view the ongoing trends in development of aligned carbon nanostructures based electrodes for energy storage.
基金Supported by Tianjin Science and Technology Planning Project(No.18PTSYJC00140)
文摘A crosslinked chitosan film with α-tocopherol was produced by a solution casting method. The appearance, mechanical properties, morphology, barrier properties and release kinetics of the α-tocopherol were evaluated. The addition of glutaraldehyde and α-tocopherol decreased the lightness and greenness and increased the yellowness of the chitosan-based film. Moreover, it also affected the compatibility of the film due to a decrease in the opacity values. The elongation at break(EB) and tensile strength(TS) values of the film decreased when the glutaraldehyde and α-tocopherol were added. In contrast, the Young’s modulus(YM) values increased. SEM micrographs showed coarse spots and pores on the surface and cross-section of the film when compared with the chitosan film. Based on the results, it was indicated that the chitosan structure was disconnected by the α-tocopherol, and the glutaraldehyde as a crosslinking agent generated a link between the chitosan network, which could be the cause of the reduced flexibility and the increased surface roughness of the film. However, the glutaraldehyde and α-tocopherol did not result in a significant difference in water vapour permeability(WVP) values. The glutaraldehyde influenced the release kinetics of the α-tocopherol as seen by the decrease of the diffusion coefficient values that were calculated using the Fickian diffusion model.
基金Project supportec by the National Natural Science Foundation of China
文摘The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability s<sub>o</sub> increases linearly from 0 to 0.03 as normal component of translational energy of the molecuar beam E<sub>n</sub> increases from 11.00 to 19.91 kcal/mol for N<sub>2</sub>/Ni system and S<sub>0</sub> from 0 to 0. 10 as E<sub>n</sub> from 10. 40 to 19.91 kcal/mol for N<sub>2</sub>/La system. The apparent activation energy △E are 6.16 kcal/mol and 5.30 kcal/mol for N<sub>2</sub>/Ni and N<sub>2</sub>/La systems respectively.
基金the Ministry of Higher Education,Malaysia for the Fundamental Research Grant Scheme(FRGS 59484).
文摘This study discusses on the tailoring of cinnamon oil emulsion-based gelatin edible films that can encapsulate,protect and release bioactive compounds in food packaging applications.The effect of this cinnamon oil film for shelf-life extension and storage stabilities of wax apples(Syzygium samarangense L.)was evaluated over 12-day storage at refrigerated temperature(5℃).Emulsion of cinnamon oil and surfactant at different ratios of 70:30(ME1),60:40(ME2)and 50:50(ME3)was incorporated into the films and the interactions between the emulsion and polymeric structure in films were analysed through physical,morphological and functional properties.The cinnamon oil emulsion-based gelatin films with a ratio of 70:30 exhibited significant increase in mechanical,water barrier,antioxidant activity and thermal stability.The increase in antioxidant activity of cinnamon oil films revealed that encapsulation of cinnamon oil in gelatin matrix better retains the bioactive compounds for food packaging applications.Cinnamon oil emulsion-based films significantly lowered the weight loss of wax apples(12.43%)compared to the control(unwrapped)wax apples(26.40%).Interestingly,this research indicates that encapsulation of bioactive compounds is governed by the ratio of oil to surfactant mixture in emulsion.It was proved that the film microemulsion with the 70:30 ratio of oil to surfactant(FME 70)have better overall performances as compared to the control(gelatin films)due to hydrogen and hydrophobic interactions with protein network of gelatin.In conclusion,cinnamon oil emulsion-based films could enhance and modify the functionality of protein-based films creating a biodegradable,sustainable and cost-effective food packaging materials.
文摘The catalytic activity of polycobaltprotoporphyrin(PCoPP)was compared with adsorbed cobaltprotoporphyrin monolayer.The results have shown that PCoPP film shows higher catalytic activity and stability than monolayer on glass carbon electrode in both alkaline and acid solution. Catalytic activity of PCoPP goes through a maximum with increase of film thickness.A model was proposed to explain such dependence.The effect of film thickness and solution pH on the stability of PCoPP film was studied.