Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle ...Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle weights are difficult to realize with modern requirements on passenger vibration comfort and wheel and rail wear.Active suspension is a powerful technology that can improve the vehicle dynamic performance and make simplified vehicle concepts possible.The KTH Railway group has,together with external partners,investigated active suspensions both numerically and experimentally for 15 years.The paper provides a summary of the activities and the most important findings.One major project carried out in close collaboration with the vehicle manufacturer Bombardier and the Swedish Transport Administration was the Green Train project,where a 2-car EMU test bench was used to demonstrate different active technologies.In ongoing projects,a concept of single axle-single suspension running gear is developed with active suspension both for comfort improvement and reduced wheel wear in curves.The results from on-track tests in the Green Train project were so good that the technology is now implemented in commercial trains and the simulation results for the single-axle running gear are very promising.展开更多
The steering characteristic of a four-wheel-steering vehicle is numerically simulated for in-depth research of the handling stability of four-wheel steering. The research results show that the deteriorating tendency o...The steering characteristic of a four-wheel-steering vehicle is numerically simulated for in-depth research of the handling stability of four-wheel steering. The research results show that the deteriorating tendency of the steering stability due to the increase of the vehicle speed is improved obviously in the case of four-wheel steering. The approach of variable steering ratio is discussed. The use of the variable steering ratio can not only raise the steering stability of vechicles at high vehicle speed, but also reduce the dicomfort and steering burden of drivers; and hence is helpful for the subjective evaluation of four-wheel steering vehicles.展开更多
The dynanaic model of a novel electric power steering(EPS) system integrated with active front steer- ing function and the three-freedom steering model are built. Based on these models, the concepts and the quanti- ...The dynanaic model of a novel electric power steering(EPS) system integrated with active front steer- ing function and the three-freedom steering model are built. Based on these models, the concepts and the quanti- tative expressions of road feel, sensitivity, and operation stability of the steering are introduced. Then, according to constrained optimization features of multi-variable function, a genetic algorithm is designed. Making the road feel of the steering as optimization objective, and operation stability and sensitivity of the steering as constraints, the system parameters are optimized by the genetic and the coordinate rotation algorithms. Simulation results show that the optimization of the novel EPS system by the genetic algorithm can effectively improve the road feel, thus providing a theoretical basis for the design and optimization of the novel EPS system.展开更多
Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric pow...Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system.展开更多
A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the nov...A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.展开更多
In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-...In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-DOF vehicle model with active front steering is built firstly, and then the fuzzy PID controller is designed in detail. The simulation investigations of the yaw stability with different steering ma- neuvers are performed. The simulation results show the effectiveness of the fuzzy PID controller for improving the vehicle's yaw stability.展开更多
A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering l...A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering linear error model is applied in the MPC controller. Then, a control incre- ment constraint and a relaxing factor are taken into account in the objective function to ensure the smoothness of the trajectory, using a softening constraints technique. In addition, the controller can obtain optimal control sequences which satisfy both the actual kinematic constraints and the actuator constraints. The circular trajectory tracking performance of the proposed method is compared with that of another MPC controller. To verify the trajectory tracking capabilities of the designed control- ler at different desired speed, the simulation experiments are carried out at the speed of 3m/s, 5m/ s and 10m/s. The results demonstrate the MPC controller has a good speed adaptability.展开更多
The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel...The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.展开更多
The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or tr...The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.展开更多
A novel electric power steering system(EPS) integrated with active front steering(AFS) is developed.It has functions of both AFS system and EPS system with two actuator units:the AFS actuator unit and the EPS actuator...A novel electric power steering system(EPS) integrated with active front steering(AFS) is developed.It has functions of both AFS system and EPS system with two actuator units:the AFS actuator unit and the EPS actuator unit.The AFS actuator unit controls the displacement transfer behavior of the steering system,and improves the handling stability under adverse road conditions by varying the steering ratio directly related to the speed and road conditions.The EPS actuator unit controls the force transfer behavior of the steering system,and improves the steering portability and road feel of the vehicle.Based on a dynamic model,the mixed H2/H∞ control strategy of the EPS actuator and the active steering intervention control strategy of the AFS actuator are designed.The simulation indicates that the novel EPS system with the designed control strategies has obvious advantages in vehicle handling stability and the driver's road feel over the traditional EPS system,and extends the vehicle's steering performance.展开更多
Vehicle collision avoidance system is a kind of auxiliary driving system based on vehicle active safety,which can assist the driver to take the initiative to avoid obstacles under certain conditions,so as to effective...Vehicle collision avoidance system is a kind of auxiliary driving system based on vehicle active safety,which can assist the driver to take the initiative to avoid obstacles under certain conditions,so as to effectively improve the driving safety of vehicle.This paper presents a collision avoidance system for an autonomous vehicle based on an active front steering,which mainly consists of a path planner and a robust tracking controller.A path planner is designed based on polynomial parameterization optimized by simulated annealing algorithm,which plans an evasive trajectory to bypass the obstacle and avoid crashes.The dynamic models of the AFS system,vehicle as well as the driver model are established,and based on these,a robust tracking controller is proposed,which controls the system to resist external disturbances and work in accordance with the planning trajectory.The proposed collision avoidance system is testified through CarSim and Simulink combined simulation platform.The simulation results show that it can effectively track the planning trajectory,and improve the steering stability and anti-interference performance of the vehicle.展开更多
Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dyna...Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dynamic model,the lateral stability region of the vehicle related to steering is estimated using Lyapunov function.We obtained stable equilibrium points of non-straight driving according to the estimated lateral stability region and also reconstructed the Lyapunov function matrix,which proved that the closed-loop system composed of yaw rate and lateral velocity is satisfied with negative definite property.In addition,the designed controller dynamically allocates the drive torque in terms of the vertical load and slip rate of the four wheels.The simulation results show that the estimated lateral stability region and the designed controller are satisfactory in handling stability performance against different roads and vehicle parameters.展开更多
To minimize the auto body's posture change caused by steering and uneven road, and improve the vehicle's riding comfort and handling stability, this paper presents an H∞ robust controller of the active suspen...To minimize the auto body's posture change caused by steering and uneven road, and improve the vehicle's riding comfort and handling stability, this paper presents an H∞ robust controller of the active suspension system, which considers the effects of different steering conditions on its dynamic performance. The vehicle's vibration in the yaw, roll, pitch and vertical direction and the suspension's dynamic deflection in the steering process are taken into account for the designed H∞ robust controller, and it introduces the frequency weight function to improve the riding comfort in the specific sensitive frequency bands to human body. The proposed robust controller is testified through simulation and steering wheel angle step test. The results show that the active suspension with the designed robust controller can enhance the anti-roll capability of the vehicle, inhibit the changes of the body, and improve the riding comfort of the vehicle under steering condition. The results of this study can provide certain theoretical basis for the research and application of active suspension system.展开更多
文摘Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle weights are difficult to realize with modern requirements on passenger vibration comfort and wheel and rail wear.Active suspension is a powerful technology that can improve the vehicle dynamic performance and make simplified vehicle concepts possible.The KTH Railway group has,together with external partners,investigated active suspensions both numerically and experimentally for 15 years.The paper provides a summary of the activities and the most important findings.One major project carried out in close collaboration with the vehicle manufacturer Bombardier and the Swedish Transport Administration was the Green Train project,where a 2-car EMU test bench was used to demonstrate different active technologies.In ongoing projects,a concept of single axle-single suspension running gear is developed with active suspension both for comfort improvement and reduced wheel wear in curves.The results from on-track tests in the Green Train project were so good that the technology is now implemented in commercial trains and the simulation results for the single-axle running gear are very promising.
文摘The steering characteristic of a four-wheel-steering vehicle is numerically simulated for in-depth research of the handling stability of four-wheel steering. The research results show that the deteriorating tendency of the steering stability due to the increase of the vehicle speed is improved obviously in the case of four-wheel steering. The approach of variable steering ratio is discussed. The use of the variable steering ratio can not only raise the steering stability of vechicles at high vehicle speed, but also reduce the dicomfort and steering burden of drivers; and hence is helpful for the subjective evaluation of four-wheel steering vehicles.
基金Supported by the National Natural Science Foundation of China(51005115)the Risiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University(SKLMT-KFKT-201105)theScience Fund of State Key Laboratory of Automotive Satefy and Energy in Tsinghua University(KF11202)~~
文摘The dynanaic model of a novel electric power steering(EPS) system integrated with active front steer- ing function and the three-freedom steering model are built. Based on these models, the concepts and the quanti- tative expressions of road feel, sensitivity, and operation stability of the steering are introduced. Then, according to constrained optimization features of multi-variable function, a genetic algorithm is designed. Making the road feel of the steering as optimization objective, and operation stability and sensitivity of the steering as constraints, the system parameters are optimized by the genetic and the coordinate rotation algorithms. Simulation results show that the optimization of the novel EPS system by the genetic algorithm can effectively improve the road feel, thus providing a theoretical basis for the design and optimization of the novel EPS system.
基金Foundation item: Projects(51005115, 51205191) supported by the National Natural Science Foundation of China Project(2012-NELEV-03) supported by the Research Foundation of National Engineering Laboratory for Electric Vehicles, China+2 种基金 Project(kfjj 120105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University, China Project supported by the Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics, China Project supported by the Fundamental Research Funds for the Central Universities, China
文摘Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system.
基金Project(51005115) supported by the National Natural Science Foundation of ChinaProject(KF11201) supported by the Science Fund of State Key Laboratory of Automotive Safety and Energy,ChinaProject(201105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,China
文摘A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.
基金Supported by the National Natural Science Foundation of China (No.50705008)
文摘In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-DOF vehicle model with active front steering is built firstly, and then the fuzzy PID controller is designed in detail. The simulation investigations of the yaw stability with different steering ma- neuvers are performed. The simulation results show the effectiveness of the fuzzy PID controller for improving the vehicle's yaw stability.
基金Supported by the National Natural Science Foundation of China(51275041,61304194)the Doctoral Fund of Ministry of Education of China(20121101120015)the Fundamental Research Funds from Beijing Institute of Technology(20120342011)
文摘A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering linear error model is applied in the MPC controller. Then, a control incre- ment constraint and a relaxing factor are taken into account in the objective function to ensure the smoothness of the trajectory, using a softening constraints technique. In addition, the controller can obtain optimal control sequences which satisfy both the actual kinematic constraints and the actuator constraints. The circular trajectory tracking performance of the proposed method is compared with that of another MPC controller. To verify the trajectory tracking capabilities of the designed control- ler at different desired speed, the simulation experiments are carried out at the speed of 3m/s, 5m/ s and 10m/s. The results demonstrate the MPC controller has a good speed adaptability.
基金Projects(51005115,51205191)supported by the National Natural Science Foundation of ChinaProject(QC201101)supported by the Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province,China+1 种基金Project(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,ChinaProjects(NS2013015,NS2012086)supported by the Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics,and NUAA Research Funding,China
文摘The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.
文摘The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.
基金supported by the National Natural Science Foundation of China (Grant Nos 51005115, 51005248)the Science Fund of State Key Laboratory of Automotive Safety and Energy (Grant No KF11201)NUAA Research Funding (Grant No NS2010058)
文摘A novel electric power steering system(EPS) integrated with active front steering(AFS) is developed.It has functions of both AFS system and EPS system with two actuator units:the AFS actuator unit and the EPS actuator unit.The AFS actuator unit controls the displacement transfer behavior of the steering system,and improves the handling stability under adverse road conditions by varying the steering ratio directly related to the speed and road conditions.The EPS actuator unit controls the force transfer behavior of the steering system,and improves the steering portability and road feel of the vehicle.Based on a dynamic model,the mixed H2/H∞ control strategy of the EPS actuator and the active steering intervention control strategy of the AFS actuator are designed.The simulation indicates that the novel EPS system with the designed control strategies has obvious advantages in vehicle handling stability and the driver's road feel over the traditional EPS system,and extends the vehicle's steering performance.
基金supported by the Research Project of Advanced Manufacture Technology for Automobile Parts(Chongqing University of Technology)Ministry of Education(Grant No.2015KLMT04)the National Natural Science Foundation of China(Grant No.51375007 and 51605219)
文摘Vehicle collision avoidance system is a kind of auxiliary driving system based on vehicle active safety,which can assist the driver to take the initiative to avoid obstacles under certain conditions,so as to effectively improve the driving safety of vehicle.This paper presents a collision avoidance system for an autonomous vehicle based on an active front steering,which mainly consists of a path planner and a robust tracking controller.A path planner is designed based on polynomial parameterization optimized by simulated annealing algorithm,which plans an evasive trajectory to bypass the obstacle and avoid crashes.The dynamic models of the AFS system,vehicle as well as the driver model are established,and based on these,a robust tracking controller is proposed,which controls the system to resist external disturbances and work in accordance with the planning trajectory.The proposed collision avoidance system is testified through CarSim and Simulink combined simulation platform.The simulation results show that it can effectively track the planning trajectory,and improve the steering stability and anti-interference performance of the vehicle.
基金The National Natural Science Foundation of China(Grant No.51105074)The Foundation of State Key Laboratory of Automotive Safety and Energy,Tsinghua University(Grant No.KF14192)The Fundamental Research Funds for the Central Universities and Jiangsu Province Postgraduate Scientific Research and Innovation Plan Projects(Grant No.KYLX_0103)
文摘Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dynamic model,the lateral stability region of the vehicle related to steering is estimated using Lyapunov function.We obtained stable equilibrium points of non-straight driving according to the estimated lateral stability region and also reconstructed the Lyapunov function matrix,which proved that the closed-loop system composed of yaw rate and lateral velocity is satisfied with negative definite property.In addition,the designed controller dynamically allocates the drive torque in terms of the vertical load and slip rate of the four wheels.The simulation results show that the estimated lateral stability region and the designed controller are satisfactory in handling stability performance against different roads and vehicle parameters.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.NS2015020)
文摘To minimize the auto body's posture change caused by steering and uneven road, and improve the vehicle's riding comfort and handling stability, this paper presents an H∞ robust controller of the active suspension system, which considers the effects of different steering conditions on its dynamic performance. The vehicle's vibration in the yaw, roll, pitch and vertical direction and the suspension's dynamic deflection in the steering process are taken into account for the designed H∞ robust controller, and it introduces the frequency weight function to improve the riding comfort in the specific sensitive frequency bands to human body. The proposed robust controller is testified through simulation and steering wheel angle step test. The results show that the active suspension with the designed robust controller can enhance the anti-roll capability of the vehicle, inhibit the changes of the body, and improve the riding comfort of the vehicle under steering condition. The results of this study can provide certain theoretical basis for the research and application of active suspension system.