High-frequency switching of power transistors in power electronic systems can cause electromagnetic emissions.Simple approaches for reducing high-frequency disturbances,such as inserting an additional gate resistor,le...High-frequency switching of power transistors in power electronic systems can cause electromagnetic emissions.Simple approaches for reducing high-frequency disturbances,such as inserting an additional gate resistor,lead to increased power losses.This makes achieving both electromagnetic compatibility and power efficiency difficult.Active gate drivers help to find a trade-off between these two.Typically,only narrow-band disturbances must be reduced.Accordingly,a target signal with a spectrum notched at some frequencies can be defined.The target signal can be reached by a target-signal-oriented control of the transistor’s gate.This leads to steeper switching slopes,such that the power losses are less increased.Generating arbitrary target signals is impossible.The transistor signal exhibits some physical limitations.A constraint satisfaction problem must be solved,and the gate drive signal must be optimized by applying a residual and Newton’s method.The proposed optimization process in the frequency domain is based on the circuit simulation method named“harmonic balance”.Measurements on a DC/DC converter exhibit the benefits of this method.展开更多
With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insul...With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors(IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices(CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.展开更多
文摘High-frequency switching of power transistors in power electronic systems can cause electromagnetic emissions.Simple approaches for reducing high-frequency disturbances,such as inserting an additional gate resistor,lead to increased power losses.This makes achieving both electromagnetic compatibility and power efficiency difficult.Active gate drivers help to find a trade-off between these two.Typically,only narrow-band disturbances must be reduced.Accordingly,a target signal with a spectrum notched at some frequencies can be defined.The target signal can be reached by a target-signal-oriented control of the transistor’s gate.This leads to steeper switching slopes,such that the power losses are less increased.Generating arbitrary target signals is impossible.The transistor signal exhibits some physical limitations.A constraint satisfaction problem must be solved,and the gate drive signal must be optimized by applying a residual and Newton’s method.The proposed optimization process in the frequency domain is based on the circuit simulation method named“harmonic balance”.Measurements on a DC/DC converter exhibit the benefits of this method.
基金Project supported by the National Natural Science Foundation of China(No.51177147)the Zhejiang Key Science and Technology Innovation Group Program,China(No.2010R50021)
文摘With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors(IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices(CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.