When using traditional drive circuits,the enhancement-mode GaN(eGaN)HEMT will be affected by high switching speed characteristics and parasitic parameters leading to worse crosstalk problems.Currently,the existing cro...When using traditional drive circuits,the enhancement-mode GaN(eGaN)HEMT will be affected by high switching speed characteristics and parasitic parameters leading to worse crosstalk problems.Currently,the existing crosstalk suppression drive circuits often have the disadvantages of increased switching loss,control complexity,and overall electromagnetic interference(EMI).Therefore,this paper combines the driving loop impedance control and the active Miller clamp method to propose an improved active Miller clamp drive circuit.First,the crosstalk mechanism is analyzed,and the crosstalk voltage model is established.Through the crosstalk voltage evaluation platform,the influencing factors are evaluated experimentally.Then,the operating principle of the improved active Miller clamp drive circuit is discussed,and the optimized parameter design method is given.Finally,the effect of the improved active Miller clamp method for suppressing crosstalk is experimentally verified.The crosstalk voltage was suppressed from 3.5 V and-3.5 V to 1 V and-1.3 V,respectively,by the improved circuit.展开更多
MOSFETs are widely used in power electronics converters.Due to the high di/dt and dv/dt of the MOSFET and parasitic parameters in the circuit,drain voltage spikes and oscillations will be generated during turn-off,whi...MOSFETs are widely used in power electronics converters.Due to the high di/dt and dv/dt of the MOSFET and parasitic parameters in the circuit,drain voltage spikes and oscillations will be generated during turn-off,which can affect the safety of the device and degrade the system's electromagnetic compatibility.This paper first studies the relationship between drain voltage spike and gate voltage during turn-off.Based on the effect of gate voltage on drain voltage spike,a new active gate driver that optimizes gate voltage is proposed.The proposed active gate driver detects the slope of the drain voltage and generates a positive pulse in the drain current fall phase to increase the gate voltage,thereby suppressing drain voltage spike and oscillation.In order to verify the effectiveness of the proposed active gate driver,a simulation circuit and an experimental platform are constructed and compared with the conventional gate driver.Simulation and experimental results show that the new active gate driver can effectively suppress the drain voltage spike and oscillation of MOSFETs,and can effectively reduce high-frequency EMI.展开更多
与硅金属氧化物半导体场效应管(silicon metal oxide semiconductor field effect transistor,SiMOSFET)相比,碳化硅(silicon carbide,SiC) MOSFET具有更高的击穿电压,更低的导通电阻,更快的开关速度和更高的工作温度,正被广泛应用于光...与硅金属氧化物半导体场效应管(silicon metal oxide semiconductor field effect transistor,SiMOSFET)相比,碳化硅(silicon carbide,SiC) MOSFET具有更高的击穿电压,更低的导通电阻,更快的开关速度和更高的工作温度,正被广泛应用于光伏逆变器、电动汽车和风力发电等领域,但是SiC MOSFET的高开关速度会导致器件开关过程中发生电流、电压过冲和振荡,不仅会增加器件的开关损耗,甚至会导致器件损坏。文中首先对SiC MOSFET的开关过程进行详细分析,得出器件开关过程中电流、电压过冲和振荡的产生机理,然后根据影响电流、电压过冲和振荡的关键因数,设计一款有源驱动电路。该电路能够在器件开关的特定阶段内同时增加驱动电阻阻值和减小栅极电流,从而抑制器件开关过程中的电流、电压过冲和振荡。实验结果表明,与传统驱动电路相比,所设计的有源驱动电路能够在不同驱动电阻、负载电流和SiC MOSFET条件下,均有效抑制器件的电流、电压过冲和振荡。展开更多
为了满足电力电子系统高频、高效和高功率密度的需求,碳化硅金属氧化物半导体场效应管(silicon carbide metal oxide semiconductor field effect transistor,SiC MOSFET)越来越广泛地应用于各类电力电子变换器。其开关过程中存在瞬态...为了满足电力电子系统高频、高效和高功率密度的需求,碳化硅金属氧化物半导体场效应管(silicon carbide metal oxide semiconductor field effect transistor,SiC MOSFET)越来越广泛地应用于各类电力电子变换器。其开关过程中存在瞬态电压电流尖峰和高频振荡,不仅对半导体器件的安全运行构成威胁,而且会恶化电力电子变换器的电磁兼容性。该文针对SiCMOSFET开关过程中存在的瞬态电压电流尖峰和振荡的问题,分析SiCMOSFET开关过程及瞬态电压电流尖峰和振荡产生机理,并在此基础上提出一种电流注入型有源驱动电路。该有源驱动电路通过在SiCMOSFET开通过程的电流上升阶段向栅极注入反向电流,在关断过程的电流下降阶段向栅极注入正向电流,以达到抑制开关过程瞬态电压电流尖峰和振荡的目的。实验结果表明,提出的有源驱动电路能够有效抑制SiCMOSFET开关过程瞬态电压电流的尖峰和高频振荡,从而从源头上改善了电力电子变换器的电磁兼容。展开更多
The insulated gate bipolar transistor(IGBT) was invented in early 80s as the controlled switch to replace HV MOSFETs and BJTs.Today,the IGBT is the major player in most of power conversion applications,such as home ap...The insulated gate bipolar transistor(IGBT) was invented in early 80s as the controlled switch to replace HV MOSFETs and BJTs.Today,the IGBT is the major player in most of power conversion applications,such as home appliance drives,power supplies,lighting,industrial variable speed drives,UPS,medical equipment,traction drives, power transmission,etc..As fully controlled device,die IGBT requires an appropriate gate driver in order to achieve full performances of the IGBT.The author of this paper has tried to systematically summarize some major aspects of application and control of high power as well low power IGBT.The major aspects considered are the IGBT losses,gate driver and protection techniques.展开更多
基金supported by the Foundation of State Key Laboratory of Wide-Bandgap Semi-conductor Power Electronic Devices(No.2019KF001)National Natural Science Foundation of China(No.51677089)。
文摘When using traditional drive circuits,the enhancement-mode GaN(eGaN)HEMT will be affected by high switching speed characteristics and parasitic parameters leading to worse crosstalk problems.Currently,the existing crosstalk suppression drive circuits often have the disadvantages of increased switching loss,control complexity,and overall electromagnetic interference(EMI).Therefore,this paper combines the driving loop impedance control and the active Miller clamp method to propose an improved active Miller clamp drive circuit.First,the crosstalk mechanism is analyzed,and the crosstalk voltage model is established.Through the crosstalk voltage evaluation platform,the influencing factors are evaluated experimentally.Then,the operating principle of the improved active Miller clamp drive circuit is discussed,and the optimized parameter design method is given.Finally,the effect of the improved active Miller clamp method for suppressing crosstalk is experimentally verified.The crosstalk voltage was suppressed from 3.5 V and-3.5 V to 1 V and-1.3 V,respectively,by the improved circuit.
基金Supported in part by the General Program of National Natural Science Foundation of China under Grant 51577010,51777012in part by the Fundamental Research Funds for the Central Universities under Grant 2017JBM054.
文摘MOSFETs are widely used in power electronics converters.Due to the high di/dt and dv/dt of the MOSFET and parasitic parameters in the circuit,drain voltage spikes and oscillations will be generated during turn-off,which can affect the safety of the device and degrade the system's electromagnetic compatibility.This paper first studies the relationship between drain voltage spike and gate voltage during turn-off.Based on the effect of gate voltage on drain voltage spike,a new active gate driver that optimizes gate voltage is proposed.The proposed active gate driver detects the slope of the drain voltage and generates a positive pulse in the drain current fall phase to increase the gate voltage,thereby suppressing drain voltage spike and oscillation.In order to verify the effectiveness of the proposed active gate driver,a simulation circuit and an experimental platform are constructed and compared with the conventional gate driver.Simulation and experimental results show that the new active gate driver can effectively suppress the drain voltage spike and oscillation of MOSFETs,and can effectively reduce high-frequency EMI.
文摘为了满足电力电子系统高频、高效和高功率密度的需求,碳化硅金属氧化物半导体场效应管(silicon carbide metal oxide semiconductor field effect transistor,SiC MOSFET)越来越广泛地应用于各类电力电子变换器。其开关过程中存在瞬态电压电流尖峰和高频振荡,不仅对半导体器件的安全运行构成威胁,而且会恶化电力电子变换器的电磁兼容性。该文针对SiCMOSFET开关过程中存在的瞬态电压电流尖峰和振荡的问题,分析SiCMOSFET开关过程及瞬态电压电流尖峰和振荡产生机理,并在此基础上提出一种电流注入型有源驱动电路。该有源驱动电路通过在SiCMOSFET开通过程的电流上升阶段向栅极注入反向电流,在关断过程的电流下降阶段向栅极注入正向电流,以达到抑制开关过程瞬态电压电流尖峰和振荡的目的。实验结果表明,提出的有源驱动电路能够有效抑制SiCMOSFET开关过程瞬态电压电流的尖峰和高频振荡,从而从源头上改善了电力电子变换器的电磁兼容。
文摘The insulated gate bipolar transistor(IGBT) was invented in early 80s as the controlled switch to replace HV MOSFETs and BJTs.Today,the IGBT is the major player in most of power conversion applications,such as home appliance drives,power supplies,lighting,industrial variable speed drives,UPS,medical equipment,traction drives, power transmission,etc..As fully controlled device,die IGBT requires an appropriate gate driver in order to achieve full performances of the IGBT.The author of this paper has tried to systematically summarize some major aspects of application and control of high power as well low power IGBT.The major aspects considered are the IGBT losses,gate driver and protection techniques.