Utilizing plasmonic non-noble metal nanoparticles(NPs)for photocatalytic hydrogen evolution reaction is a significant step toward green energy production.However,optimizing the interface between non-noble metal NPs an...Utilizing plasmonic non-noble metal nanoparticles(NPs)for photocatalytic hydrogen evolution reaction is a significant step toward green energy production.However,optimizing the interface between non-noble metal NPs and semiconducting materials in metal-semiconductor composites remains challenging owing to the inevitable surface oxide layers of non-noble metal NPs because the surface oxide layers of non-noble metal NPs can suppress the transfer of photoinduced carriers,leading to poor photocatalytic performance.Herein,we propose a photoinduced interface activation strategy to reduce the number of oxide layers based on a dynamic charge-transfer mechanism under illumination conditions,with Bi NPs and a Ni-based metal-organic framework(MOF)selected as model materials.Under light illumination,the photoinduced charges and plasmonic hot electrons heavily pooled at the interface between the Bi NPs and Ni-MOF,resulting in the reduction of the oxide layer on the surface of Bi,thus attenuating its hindering effect on charge transfer.This phenomenon led to a dynamically enhanced carrier concentration in the Bi/Ni-MOF composite,with an outstanding photocatalytic hydrogen evolution rate of 5822μmol g^(−1)h^(−1)achieved with the composite.The results of this study indicate that our strategy provides a new method for optimizing plasmonic non-noble metal Bi NPs with oxide layers.展开更多
Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reduc...Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria(SRB) on mercury(Hg) methylation at sediment–water interfaces. Concentrations of dissolved methyl mercury(DMe Hg) in the overlying water of the control cores with bioactivity maintained(BAC) and cores with only sulfate-reducing bacteria inhibited(SRBI) and bacteria fully inhibited(BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMe Hg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations(r =- 0.5311 and r =- 0.4977 for BAC and SRBI, respectively). The water DMe Hg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment–water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster(hgc AB), besides SRB,causing Hg methylation in the sediment–water system.展开更多
A highly active interface can enhance the catalytic efficiency of catalysts toward the oxygen evolution reaction(OER).However,accurately tuning their atomic interface configurations of defects with sufficient activity...A highly active interface can enhance the catalytic efficiency of catalysts toward the oxygen evolution reaction(OER).However,accurately tuning their atomic interface configurations of defects with sufficient activity and stability remains a grand challenge.Herein,we report on breaking the activity and stability limits of CoO_(x) nanosheets in the OER process by constructing copious high-energy atomic steps and cavities,in which S or Ce atoms simultaneously replace O or Co atoms from CoO_(x),thus achieving high-energy atomic interface Ce,O-Co_(3)S_(4) nanosheets.By combining in situ characterization and density functional theory calculations,it is shown that the unique orbital coupling between Ce-4f,O(S)-2p,and Co-3d causes it to be closer to the Fermi level,leading to faster charge transfer capability.More importantly,the novel structure breaks the stability limit of cobalt sulfide with planar defects,which gives high catalytic activity and stability in 0.1 M KOH solutions,better than commercial RuO_(2) and IrO_(2) noble metal catalysts.As expected,Ce,O-Co_(3)S_(4) possesses much better turnover frequency activity(0.064 s^(-1))at an overpotential of 300 mV,which is ~7 times larger than that of Ce-CoO_(x)(0.009 s^(-1)).Our work presents a new perspective of designing catalysts with atomically dispersed orbital electronic coupling defects toward efficient OER electrocatalysis.展开更多
基金supported by the Youth Natural Science Foundation of Shanxi Province(202103021223053)the National Natural Science Foundation of China(NSFC 22271211,22305169)the 1331 Project of Shanxi Province。
文摘Utilizing plasmonic non-noble metal nanoparticles(NPs)for photocatalytic hydrogen evolution reaction is a significant step toward green energy production.However,optimizing the interface between non-noble metal NPs and semiconducting materials in metal-semiconductor composites remains challenging owing to the inevitable surface oxide layers of non-noble metal NPs because the surface oxide layers of non-noble metal NPs can suppress the transfer of photoinduced carriers,leading to poor photocatalytic performance.Herein,we propose a photoinduced interface activation strategy to reduce the number of oxide layers based on a dynamic charge-transfer mechanism under illumination conditions,with Bi NPs and a Ni-based metal-organic framework(MOF)selected as model materials.Under light illumination,the photoinduced charges and plasmonic hot electrons heavily pooled at the interface between the Bi NPs and Ni-MOF,resulting in the reduction of the oxide layer on the surface of Bi,thus attenuating its hindering effect on charge transfer.This phenomenon led to a dynamically enhanced carrier concentration in the Bi/Ni-MOF composite,with an outstanding photocatalytic hydrogen evolution rate of 5822μmol g^(−1)h^(−1)achieved with the composite.The results of this study indicate that our strategy provides a new method for optimizing plasmonic non-noble metal Bi NPs with oxide layers.
基金supported by the National Natural Science Foundation of China(nos.41063006,41363007,and 41273099)the Science and Technology Fund of Guizhou Province(no.[2013]2296)
文摘Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria(SRB) on mercury(Hg) methylation at sediment–water interfaces. Concentrations of dissolved methyl mercury(DMe Hg) in the overlying water of the control cores with bioactivity maintained(BAC) and cores with only sulfate-reducing bacteria inhibited(SRBI) and bacteria fully inhibited(BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMe Hg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations(r =- 0.5311 and r =- 0.4977 for BAC and SRBI, respectively). The water DMe Hg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment–water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster(hgc AB), besides SRB,causing Hg methylation in the sediment–water system.
基金supported by the National Natural Science Foundation of China(NSFC)(grant no.22075223)the Natural Science Foundation of Jiangsu(grant no.BK20201120)+2 种基金the Innovation Project of Jiangsu Province,Excellent Scientific and Technological Innovation Team of Colleges and Universities of Jiangsu Province(grant no.SUJIAOKE 2021 No.1)the Key Subject of Ecology of Jiangsu Province(grant no.SUJIAOYANHAN 2022 No.2)Scientific and Technological Innovation Team of Nanjing(grant no.NINGJIAOGAOSHI 2021 No.16).
文摘A highly active interface can enhance the catalytic efficiency of catalysts toward the oxygen evolution reaction(OER).However,accurately tuning their atomic interface configurations of defects with sufficient activity and stability remains a grand challenge.Herein,we report on breaking the activity and stability limits of CoO_(x) nanosheets in the OER process by constructing copious high-energy atomic steps and cavities,in which S or Ce atoms simultaneously replace O or Co atoms from CoO_(x),thus achieving high-energy atomic interface Ce,O-Co_(3)S_(4) nanosheets.By combining in situ characterization and density functional theory calculations,it is shown that the unique orbital coupling between Ce-4f,O(S)-2p,and Co-3d causes it to be closer to the Fermi level,leading to faster charge transfer capability.More importantly,the novel structure breaks the stability limit of cobalt sulfide with planar defects,which gives high catalytic activity and stability in 0.1 M KOH solutions,better than commercial RuO_(2) and IrO_(2) noble metal catalysts.As expected,Ce,O-Co_(3)S_(4) possesses much better turnover frequency activity(0.064 s^(-1))at an overpotential of 300 mV,which is ~7 times larger than that of Ce-CoO_(x)(0.009 s^(-1)).Our work presents a new perspective of designing catalysts with atomically dispersed orbital electronic coupling defects toward efficient OER electrocatalysis.