Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the...Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively.展开更多
Active Magnetic Bearing(AMB)levitates rotor by magnetic force without friction,and it can provide active control force to suppress vibration while rotating.Most of vibration suppressing methods need angular speed sens...Active Magnetic Bearing(AMB)levitates rotor by magnetic force without friction,and it can provide active control force to suppress vibration while rotating.Most of vibration suppressing methods need angular speed sensors to obtain rotating speed,but in many occasions,angular speed sensor is difficult to install or is difficult to guarantee reliability.This paper proposed a vibration suppressing strategy without angular speed sensor based on generalized integrator and frequency locked loop(GI-FLL)and phase shift generalized integrator(PSGI).GI-FLL and high-pass filter estimate frequency from control current,PSGI is applied to generate compensating signal.Firstly,model of AMB system expressed by transfer function is established and effect of centrifugal force is analyzed.Then,principle and process of vibration suppressing strategy is introduced.Influence of parameters are analyzed by root locus and bode diagram.Simulation results display the process of frequency estimation and performance of displacement.Experiments are carried on a test rig,results of simulations and experiments demonstrate the effectiveness of proposed vibration suppressing strategy.展开更多
Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mecha...Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mechanical touch-rubbing when the system works at an operational speed closer to the critical speed. In order to investigate this problem, the linear model and nonlinear model of the single mass symmetric rigid rotor system supported by AMB are established respectively and the corresponding transfer functions of close-loop system are given. To pass through the numerical calculation by using MATLAB/Simulink, the effect of both the unbalance response and threshold speed of touch-rubbing of the system subjected to nonlinear magnetic forces and nonlinear output current of power amplifier are studied. Furthermore, threshold speed of touch-rubbing of the rotor-bearing system is defined and the results of numerical simulation are presented. Finally, based on above studies, two methods of increasing the touch-rubbing threshold speed are discussed.展开更多
This paper first suggests the use of the Fourier frequency transmission method of two dimensions function ( 2D FFT) to analyze radial rotating errors that occurred in a rotor. Based on this method a magnetic rotor i...This paper first suggests the use of the Fourier frequency transmission method of two dimensions function ( 2D FFT) to analyze radial rotating errors that occurred in a rotor. Based on this method a magnetic rotor is measured. The authors point out that the main cause to affect radial rotating accuracy of the rotating shaft at a high speed is the dynamic imbalance of the shaft itself. Finally the feedforward control scheme is suggested to improve the accuracy of the shaft in an active magnetic bearing ( AMB ) system.展开更多
Although standard iterative learning control(ILC) approaches can achieve perfect tracking for active magnetic bearing(AMB) systems under external disturbances, the disturbances are required to be iteration-invariant.I...Although standard iterative learning control(ILC) approaches can achieve perfect tracking for active magnetic bearing(AMB) systems under external disturbances, the disturbances are required to be iteration-invariant.In contrast to existing approaches, we address the tracking control problem of AMB systems under iteration-variant disturbances that are in different channels from the control inputs. A disturbance observer based ILC scheme is proposed that consists of a universal extended state observer(ESO) and a classical ILC law. Using only output feedback, the proposed control approach estimates and attenuates the disturbances in every iteration. The convergence of the closed-loop system is guaranteed by analyzing the contraction behavior of the tracking error.Simulation and comparison studies demonstrate the superior tracking performance of the proposed control approach.展开更多
In a self-sensing active magnetic bearing (AMB) system driven by pulse width modulation (PWM) switching power amplifiers, the rotor position information can be extracted from coil current and voltage signals by a spec...In a self-sensing active magnetic bearing (AMB) system driven by pulse width modulation (PWM) switching power amplifiers, the rotor position information can be extracted from coil current and voltage signals by a specific signal demodulation process. In this study, to reduce the complexity of hardware, the coil voltage signal was not filtered but measured in the form of a duty cycle by the eCAP port of DSP (TMS320F28335). A mathematical model was established to provide the relationship between rotor position, current ripple, and duty cycle. Theoretical analysis of the amplitude-frequency characteristic of the coil current at the switching frequency was presented using Fourier series, Jacobi-Anger identity, and Bessel function. Experimental results showed that the time-varying duty cycle causes infinite side frequencies around the switching frequency. The side frequency interval depends on the varying frequency of the duty cycle. Rotor position can be calculated by measuring the duty cycle and demodulating the coil current ripple. With this self-sensing strategy, the rotor system supported by AMBs can steadily rotate at a speed of 3000 r/min.展开更多
基金supported by the Natural Science Foundation of China (U22A20214)。
文摘Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively.
基金the National Natural Science Foundation of China(NSFC)under Grant 51877091.
文摘Active Magnetic Bearing(AMB)levitates rotor by magnetic force without friction,and it can provide active control force to suppress vibration while rotating.Most of vibration suppressing methods need angular speed sensors to obtain rotating speed,but in many occasions,angular speed sensor is difficult to install or is difficult to guarantee reliability.This paper proposed a vibration suppressing strategy without angular speed sensor based on generalized integrator and frequency locked loop(GI-FLL)and phase shift generalized integrator(PSGI).GI-FLL and high-pass filter estimate frequency from control current,PSGI is applied to generate compensating signal.Firstly,model of AMB system expressed by transfer function is established and effect of centrifugal force is analyzed.Then,principle and process of vibration suppressing strategy is introduced.Influence of parameters are analyzed by root locus and bode diagram.Simulation results display the process of frequency estimation and performance of displacement.Experiments are carried on a test rig,results of simulations and experiments demonstrate the effectiveness of proposed vibration suppressing strategy.
文摘Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mechanical touch-rubbing when the system works at an operational speed closer to the critical speed. In order to investigate this problem, the linear model and nonlinear model of the single mass symmetric rigid rotor system supported by AMB are established respectively and the corresponding transfer functions of close-loop system are given. To pass through the numerical calculation by using MATLAB/Simulink, the effect of both the unbalance response and threshold speed of touch-rubbing of the system subjected to nonlinear magnetic forces and nonlinear output current of power amplifier are studied. Furthermore, threshold speed of touch-rubbing of the rotor-bearing system is defined and the results of numerical simulation are presented. Finally, based on above studies, two methods of increasing the touch-rubbing threshold speed are discussed.
文摘This paper first suggests the use of the Fourier frequency transmission method of two dimensions function ( 2D FFT) to analyze radial rotating errors that occurred in a rotor. Based on this method a magnetic rotor is measured. The authors point out that the main cause to affect radial rotating accuracy of the rotating shaft at a high speed is the dynamic imbalance of the shaft itself. Finally the feedforward control scheme is suggested to improve the accuracy of the shaft in an active magnetic bearing ( AMB ) system.
文摘Although standard iterative learning control(ILC) approaches can achieve perfect tracking for active magnetic bearing(AMB) systems under external disturbances, the disturbances are required to be iteration-invariant.In contrast to existing approaches, we address the tracking control problem of AMB systems under iteration-variant disturbances that are in different channels from the control inputs. A disturbance observer based ILC scheme is proposed that consists of a universal extended state observer(ESO) and a classical ILC law. Using only output feedback, the proposed control approach estimates and attenuates the disturbances in every iteration. The convergence of the closed-loop system is guaranteed by analyzing the contraction behavior of the tracking error.Simulation and comparison studies demonstrate the superior tracking performance of the proposed control approach.
基金Project (No. LZ13E070001) supported by the Natural Science Foundation of Zhejiang Province, China
文摘In a self-sensing active magnetic bearing (AMB) system driven by pulse width modulation (PWM) switching power amplifiers, the rotor position information can be extracted from coil current and voltage signals by a specific signal demodulation process. In this study, to reduce the complexity of hardware, the coil voltage signal was not filtered but measured in the form of a duty cycle by the eCAP port of DSP (TMS320F28335). A mathematical model was established to provide the relationship between rotor position, current ripple, and duty cycle. Theoretical analysis of the amplitude-frequency characteristic of the coil current at the switching frequency was presented using Fourier series, Jacobi-Anger identity, and Bessel function. Experimental results showed that the time-varying duty cycle causes infinite side frequencies around the switching frequency. The side frequency interval depends on the varying frequency of the duty cycle. Rotor position can be calculated by measuring the duty cycle and demodulating the coil current ripple. With this self-sensing strategy, the rotor system supported by AMBs can steadily rotate at a speed of 3000 r/min.