The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and ...The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and bowl-shape distortion, the model is established of the relationship between the electromagnetic performance and the position error of the radiated elements. The method is presented of analyzing the far-field pattern of the distorted rectangular active phased array antenna. The analysis results of a planar phased array antenna with different distortions grades prove the validity of the model. Therefore, by the method, the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.展开更多
This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed a...This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.展开更多
To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The sc...To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.展开更多
An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aper...An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aperture. Also, the gain drop and sidelobe degradation due to random amplitude and phase errors and element (or T/R module) failures are investigated.展开更多
Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a...Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.展开更多
Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and contr...Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and control of membrane antenna are challenging.To maintain the working performance of the antenna,the pointing and surface accuracies must be strictly maintained.Therefore,the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value,and have attracted considerable interest in recent years.This paper reviews the dynamics and active control of large-scale space membrane antennas.First,the development and status of large-scale space membrane antennas are summarized.Subsequently,the key problems in the dynamics and active control of large membrane antennas,including the dynamics of wrinkled membranes,large-amplitude nonlinear vibration,nonlinear model reduction,rigid-flexible-thermal coupling dynamic modeling,on-orbit modal parameter identification,active vibration control,and wave-based vibration control,are discussed in detail.Finally,the research outlook and future trends are presented.展开更多
Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambi...Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.展开更多
A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of th...A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.展开更多
For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in...For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in practice, random phase noise imposed by noisy local oscillators can cause significant performance degradation in TDMS-based calibration systems. Characterization of phase noise effects is therefore crucial for practical applications. In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and various practical factors involving the signal-to-noise ratio(SNR), the standard deviation of phase noise, the given tolerance region, and the length of the spreading code. The results provide high efficiency for evaluating the calibration performance of the MBAs based on TDMS, especially for precisely anticipating the impact of phase noise. Finally, the accuracy of the derived results is assessed by simulations in different scenarios.展开更多
基金supported partly by the National Natural Science Foundation of China(50805111)the Natural Science Basic Research Plan in Shaanxi Province of China(SJ08E_203.)
文摘The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and bowl-shape distortion, the model is established of the relationship between the electromagnetic performance and the position error of the radiated elements. The method is presented of analyzing the far-field pattern of the distorted rectangular active phased array antenna. The analysis results of a planar phased array antenna with different distortions grades prove the validity of the model. Therefore, by the method, the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.
文摘This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.
基金The project supported by National Natural Science Foundation of China (No. 60572095)Research Foundation for Doctors of ZZULI
文摘To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.
文摘An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aperture. Also, the gain drop and sidelobe degradation due to random amplitude and phase errors and element (or T/R module) failures are investigated.
基金supported by the grant of China Ocean Mineral Resources R&D Association(DY135-S2-1-01)
文摘Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.
基金the National Natural Science Foundation of China(Grant Nos.12102252 and 12172214)Natural Science Foundation of Chongqing(Grant No.CSTB2023NSCQ-MSX0761).
文摘Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and control of membrane antenna are challenging.To maintain the working performance of the antenna,the pointing and surface accuracies must be strictly maintained.Therefore,the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value,and have attracted considerable interest in recent years.This paper reviews the dynamics and active control of large-scale space membrane antennas.First,the development and status of large-scale space membrane antennas are summarized.Subsequently,the key problems in the dynamics and active control of large membrane antennas,including the dynamics of wrinkled membranes,large-amplitude nonlinear vibration,nonlinear model reduction,rigid-flexible-thermal coupling dynamic modeling,on-orbit modal parameter identification,active vibration control,and wave-based vibration control,are discussed in detail.Finally,the research outlook and future trends are presented.
基金supported partially by the 973 Program under the Grant 2012CB316100
文摘Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.
文摘A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.
基金supported by the NSFC(Joint Foundation of NSFC&Fundamental Research for General Purpose Technologies)under Grant U1636125
文摘For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in practice, random phase noise imposed by noisy local oscillators can cause significant performance degradation in TDMS-based calibration systems. Characterization of phase noise effects is therefore crucial for practical applications. In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and various practical factors involving the signal-to-noise ratio(SNR), the standard deviation of phase noise, the given tolerance region, and the length of the spreading code. The results provide high efficiency for evaluating the calibration performance of the MBAs based on TDMS, especially for precisely anticipating the impact of phase noise. Finally, the accuracy of the derived results is assessed by simulations in different scenarios.