The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic d...The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.展开更多
A novel method was described for the production of silver nanoparticle by using nano-carbon as active template.Special ultrasonic condition was used to assure the active effect of the template and achieve an even and ...A novel method was described for the production of silver nanoparticle by using nano-carbon as active template.Special ultrasonic condition was used to assure the active effect of the template and achieve an even and stable micro-reactor system,therefore yield uniform silver nanoparticle without obvious agglomeration.By laser granularity instrument measurement,the silver nanoparticles show a mean diameter of 20.4 nm and narrow distribution between 18.7 nm and 23.0 nm according to the optimum technology.Regular spherical morphology can be observed by transmission electron microscopy(TEM).X-ray diffraction analysis indicates that Ag+ is deoxidized to form metal Ag during producing precursor,subsequent calcinations promote phase transformation from nonholonomic crystal to complete cubic crystal,which is consistent with the standard JCPDS card of silver.The results reveal that the nano-carbon in active template system not only exerts micro-reactor and steric stabilization effect,but also acts as reducing agent during the reaction.展开更多
High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretr...High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.展开更多
SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reacti...SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reaction method.And the growth mechanism of the SrTiO_3 nano-crystals under the liquid condition with/without adding the surface active agent was investigated.It was found that adding the surface active agent contributes to the processing in which the ions gathering bodies transit to a more stable phase through the chemical reaction and form the flake SrTiO_3 nano-crystals.展开更多
The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon...The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon which is harmful to cement composites. The structures and morphologies of these products are investigated by the Fourier transform infrared spectroscopy, X-ray diffraction, scanning/ transmission electron microscopy and N2 adsorption- desorption analyzer. The results show that the as-produced RHA and Si02 nanoparticles exist in amorphous phase without residual carbon, and exhibit porous structures with specific surface areas of 170.19 and 248. 67 m2 /g , respectively. The micro particles of RHA are aggregated by numerous loosely packed Si02 gel particles with the diameter of 50 to 100 nm. The Si02 nanoparticles are well dispersed with the average size of about 30 nm. Both the RHA and Si02 nanoparticles can significantly reduce the conductivity of saturated Ca(OH)2 solution and increase the early strength of the cement composites. They also exhibit high pozzolanic activity, indicating that they can be used as ecological nano mineral admixtures.展开更多
The pozzolanic activity of nano-SiO2 and silica fume was comparatirely stndied by X-ray diffraction ( XRD ) , differential scanning calorimetry (DSC), scanning electron micrascopy (SEM) and the compressive , bon...The pozzolanic activity of nano-SiO2 and silica fume was comparatirely stndied by X-ray diffraction ( XRD ) , differential scanning calorimetry (DSC), scanning electron micrascopy (SEM) and the compressive , bond and bending streugths of hardened paste and concrete were also measured. Results indicate that the compressive strength development of the paste made from Ca(OH)2 and nano-SiO2, the reaction rate of Ca( OH)2 with nano- SiO2 and the velocity of C-S-H gel formation from Ca ( OH)2 with nano-SiO2 showed marked increases over those of Ca( OH)2 with silica fume. Furthermore, the bond strength at the interface between aggregate and hardened cement paste, and the bending strength of concrete incorporated with 3% .NS increased more than those with SF, especially at early ages. To sum up, the pozzolanic activity of nano-SiO2 was much greater than that of silica fume. The results suggest that with a small amount of nano-SiO2, the Ca( OH)2 crystal at the interface between hardened cement paste and aggregate at early ages may be effectively absorbed in high performance concrete.展开更多
In this study, nano-capsules of lansiumamide B (NCLB) was prepared by the microemulsion polymerization method to improve the nematicidal efficacy of lansiumamide B (LB). An optimal formulation was gained by orthog...In this study, nano-capsules of lansiumamide B (NCLB) was prepared by the microemulsion polymerization method to improve the nematicidal efficacy of lansiumamide B (LB). An optimal formulation was gained by orthogonal experiment design based on the encapsulation efficiency (E, %) value. The optimized NCLB were spherical and uniform under transmission electron microscopy (TEM). The mean particle size, zeta potential and E, were (38.50~0.64) nm, (-70.5~0.76) mV and (95.13± 1.16)%, respectively. The release profile indicated that the accumulated release of LB in NCLB reached up to 82% within 96 h. Effects of NCLB against Bursaphelenehus xylophilus and J2 ofMeloidogyne incognita were reported in this paper. The nematicidal activity of NCLB has been remarkably increased, with LCs0 values of 2.1407 mg L-1 and 19.3608 mg L-1, respectively, at 24 h after treatment. The disease progression and the average number of root knots of Ipomoea aquatica were 1.50 and 7.25, respectively, in the treatment of NCLB, at concentration of 200 mg L-1 significantly lower than the treatment of LB and ethoprophos. Compared to control, the treatments of NCLB, LB and ethoprophos leaded the disease progression to drop 68.42, 36.84 and 26.32%, respectively, and caused the average number of root knots to fall 83.94, 78.03 and 63.66%. These results suggested that NCLB, as a novel nematicides formulation, performed more efficient and longer effective maintenance against plant parasitic nematodes.展开更多
The nano-TiO_2 particles were prepared by liquid hydrolysis method and characterized using XRD. Its antibacterial activity against two representative bacterial, Escherichia eoli and Staphylococcus aureus, was also stu...The nano-TiO_2 particles were prepared by liquid hydrolysis method and characterized using XRD. Its antibacterial activity against two representative bacterial, Escherichia eoli and Staphylococcus aureus, was also studied. The experimental results showed that the nano-TiO_2 caleinated at 600-700℃ contained the obvious anatase phase and exerted exeeUent antibacterial activity. The feature of antibacterial activity of nano- TiO_2 was non-strains specificity and exerted best antibacterial activity at concentration of 0.8 g/L.展开更多
A new selenium source, Nano red elemental selenium (Nano-Se) was used to study the effect on the GPx activity of broiler chick kidney cells (BCKC) in vitro, Sodium selenite (Na_ 2 SeO_ 3 ) and seleno-1-methionine (S...A new selenium source, Nano red elemental selenium (Nano-Se) was used to study the effect on the GPx activity of broiler chick kidney cells (BCKC) in vitro, Sodium selenite (Na_ 2 SeO_ 3 ) and seleno-1-methionine (Se-Met) were used as the controls. The results showed that the effects of three kinds of Se forms on the GPx activity of BCKC were accordant(p>0.05) compared with each other at 0.01,0.05 and 0.10 μmol/L Se concentrations treatments. In the range of 0.00-0.10 μmol/L Se concentrations, the GPx activity increased with elevation of Se concentrations in medium. For the three kinds of Se forms, the GPx activity reached the climax at 0.10 μmol/L Se concentration. At 0.20 and 0.30 μmol/L Se concentrations, the influnces of three kinds of Se forms were not accordant with one another. For Nano-Se, the GPx activity at 0.20 and 0.30 μmol/L Se concentrations remained the same as that at 0.10 μmol/L Se concentration treatment. For Se-Met, the GPx activity at 0.20 μmol/L Se concentration treatment remained the same with 0.10 μmol/L treatment; the GPx activity at 0.30 μmol/L Se concentration treatment was declined significantly(p<0.05) compared with 0.10 or 0.20 μmol/L treatment. For Na_ 2 SeO_ 3 , the GPx activity falled gradually with Se concentration increasing from 0.10 μmol/L to 0.30 μmol/L, and at 0.30 μmol/L Se concentration treatment, the GPx activity was less than the original of BCKC. The results implicated, on the GPx activity of BCKC in vitro, the ranking of width range of the most suitable Se concentration for nutrition curve of the three Se formes is Nano-Se>Se-Met>Na_ 2 SeO_ 3 .展开更多
A facile solution processed strategy of synthesizing nano silver assembled on carbon nanotubes (CNTs) at room temperature was put forward. Activated carbon nanotubes were used as precursors for preparing silver-deco...A facile solution processed strategy of synthesizing nano silver assembled on carbon nanotubes (CNTs) at room temperature was put forward. Activated carbon nanotubes were used as precursors for preparing silver-decorated nanotubes. The nature of the decorated nanotubes was studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The inert surfaces of carbon nanotubes were activated by introducing catalytic nuclei via an oxidation-sensitization-activation approach. Activated carbon nanotubes catalyzed the metal deposition specifically onto their surfaces upon immersion in electroless plating baths. The method produced nanotubes decorated with silver. The extent of silver decoration was found to be dependent on fabrication conditions. Dense nano silver assembled on nanotube surfaces could be obtained by keeping a low reaction rate in the solution phase. The results here show that this method is an efficient and simple means of achieving carbon nanotubes being assembled by nano metal.展开更多
ZnO nano-particles were synthesized via an ammonical ammonium carbonate solution by precipitation method in presence of some additives such as urea, oleic and stearic acid. The morphology and crystallinity of the obta...ZnO nano-particles were synthesized via an ammonical ammonium carbonate solution by precipitation method in presence of some additives such as urea, oleic and stearic acid. The morphology and crystallinity of the obtained zinc oxide particles depend critically on the type of additive which was used. Additives also affected the crystal orientation of precipitate nano-particles. SEM, XRD, BET and UV-visible were used to characterize morphology, microstructure, specific surface area and optical properties of the products.Photo-catalysis properties of the as-prepared ZnO powders were evaluated by degradation of methyl red(acid red) in aqueous solution exposed to UV-light. Results suggested a close relationship among the morphology,size and surface area on photo-catalysis and optical properties of the particles. The widest Egvalue(3.56 e V),highest degradation and decolorization efficiency(99%) were obtained from a sample with the smallest grain size(largest surface area) which were used urea as an additive.展开更多
Currently,it is difficult to extract the depth feature of the frontal emergency stops dangerous activity signal,which leads to a decline in the accuracy and efficiency of the frontal emergency stops the dangerous acti...Currently,it is difficult to extract the depth feature of the frontal emergency stops dangerous activity signal,which leads to a decline in the accuracy and efficiency of the frontal emergency stops the dangerous activ-ity.Therefore,a recognition for frontal emergency stops dangerous activity algorithm based on Nano Internet of Things Sensor(NIoTS)and transfer learning is proposed.First,the NIoTS is installed in the athlete’s leg muscles to collect activity signals.Second,the noise component in the activity signal is removed using the de-noising method based on mathematical morphology.Finally,the depth feature of the activity signal is extracted through the deep transfer learning model,and the Euclidean distance between the extracted feature and the depth feature of the frontal emergency stops dangerous activity signal is compared.If the European distance is small,it can be judged as the frontal emergency stops dangerous activity,and the frontal emergency stops dangerous activity recognition is realized.The results show that the average time delay of activity signal acquisition of the algorithm is low,the signal-to-noise ratio of the action signal is high,and the activity signal mean square error is low.The variance of the frontal emergency stops dangerous activity recognition does not exceed 0.5.The difference between the appearance time of the dangerous activity and the recognition time of the algorithm is 0.15 s,it can accurately and quickly recognize the frontal emergency stops the dangerous activity.展开更多
Technetium-99 is a radioactive isotope with a half-life of 2.13 × 105 year. 99Tc is a significant contaminant of concern to the world. For this reason, a detailed understanding of technetium chemistry is essentia...Technetium-99 is a radioactive isotope with a half-life of 2.13 × 105 year. 99Tc is a significant contaminant of concern to the world. For this reason, a detailed understanding of technetium chemistry is essential for the protecting the public and the environment especially after increasing the various applications and uses of isotopes in the medical practices. Therefore, treatment of waste increases prior to the safe discharge to the environment or the storage. The sorption of technetium in the form of pertechnetate on a nano manganese oxide loaded into activated carbon has been investigated. Nano manganese oxide (NMO) was synthesized from manganese chloride and potassium permanganate by co-precipitation and forming a new composite by loading a nanoparticle into a modified activated carbon by different ratios. Modifications of activated carbons using different concentrations of HNO3 (4 M, 6 M and 8 M) are used in prepared composites. Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) were used to characterize the prepared composites. The adsorption of anions from low level radioactive aqueous waste was examined using batch technique. Different parameters affecting on the adsorption process were studied for the removal of . The results revealed that NMO/AC (4 M, 6 M and 8 M) has a high adsorption efficiency (93.57%, 90.3% and 90.3%) respectively compared to NMO and AC which have a lower adsorption efficiency (41% and 38.9%) respectively. Moreover, the adsorption isotherm belonged to Freundlich model, the adsorption data followed pseudo-second order model and the thermodynamic study indicated that the adsorption of on Nano-composites was an exothermic and spontaneous process.展开更多
The title complex [ NH3 CH2 CH ( NH2 ) CH3 ]2 [ M ( Ⅵ ) O2 ( OC6 H4 O)2 ] ( M = Mo0. 6 W0.4 ) was synthesized via a simple solution-phase ehemieal route. The determination of single erystal X-ray diffraction ...The title complex [ NH3 CH2 CH ( NH2 ) CH3 ]2 [ M ( Ⅵ ) O2 ( OC6 H4 O)2 ] ( M = Mo0. 6 W0.4 ) was synthesized via a simple solution-phase ehemieal route. The determination of single erystal X-ray diffraction revealed that the title eompound is erystallized in a monoelinie system with P2( 1 )/n spaee group, a = 1. 0913(10) nm, b = 1. 0442(10) nm, c=1.8842(19) nm, α=90°, β=96.530(17)°, γ=90°, Z=4, and V=2.133(4) nm^3. The mononuelear anionie unit [ M ( Ⅵ ) O2 ( 0C6 H4 O) 2 ] 2 - displays ehiral pseudo-oetahedral [ MO6 ] eoordination geometry and is linked by ehiral eations via hydrogen bond and π…π stacking interaetion. The transmission electron microseopy images show that the title eomplex is eomprised of nano-partieles with diameters ranging from 20 to 50 nm. The NMR study shows the ^1H downfield chemical shifts of [ NH3 CHa Hb CH ( NH2 ) CH3 ]^+ eations in the title eomplex when it is mixed with adenosine-triphosphate( ATP), and the chemical shift difference between Ha and Hb is inereased greatly, and most of the eateeholate ligands dissociate from the eentral metal atoms. The DNA cleavage aetivity experiment reveals that DNA eleavage promoted by the title eomplex is lower than that by Na2 MoO4 whieh possesses antitumor propetty, but higher than that by Na2WO4.展开更多
Nano-F-/Ce3+/TiO2 particles were prepared by hydrolysis of tetrabutyl titanate in a mixed CF3COOH-Ce(NO3)3-H2O solution. The photocatalytic decomposition of methylene blue in aqueous solution was used to evaluate thei...Nano-F-/Ce3+/TiO2 particles were prepared by hydrolysis of tetrabutyl titanate in a mixed CF3COOH-Ce(NO3)3-H2O solution. The photocatalytic decomposition of methylene blue in aqueous solution was used to evaluate their photocatalytic activities. The powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersion X-ray spectrum (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis. The results showed that F- and Ce3+ were doped into TiO2. The appropriate content of fluorine and cerium were 2.0% and 1.0% (atom fraction) respectively. The codoped nano-F-/Ce3+/TiO2 particles had higher BET specific surface area, smaller crystallite size and higher photocatalytic activity than those of undoped TiO2 particles.展开更多
Yb 3+-doped TiO_2 composite nano-particles were prepared by the acid-catalyzed sol-gel method using Ti(OC_4H_9)_4 and Yb(NO_3)_3 as precursors. The effects of the amount of Yb 3+ doping and calcination temperature on ...Yb 3+-doped TiO_2 composite nano-particles were prepared by the acid-catalyzed sol-gel method using Ti(OC_4H_9)_4 and Yb(NO_3)_3 as precursors. The effects of the amount of Yb 3+ doping and calcination temperature on the phase transformation, crystallite size, surface texture of the nanopowders were investigated by XRD and BET specific surface area. Their photocatalytic activities were evaluated using the photocatalytic degradation of methylene blue in aqueous solution as a probe reaction. At the interface, titanium ions substitute for ytterbium ions in the lattice of Yb_2O_3 to form Ti-O-Yb bonds, which cause distortion and inhibit the anatase to rutile phase transformation in TiO_2. The results indicate that Yb 3+-doping can enhance the photocatalytic activity of TiO_2 nano-powders as compared with pure TiO_2. 0.125%(mass fraction) Yb 3+ doped TiO_2 nano-powders calcined at 600 ℃ for 2 h show the highest photocatalytic activity. The increase in photoactivity is due to the effects of the factors such as crystal phase, crystallite size, surface chemical property, surface density of OH groups, and surface texture properties of the TiO_2 nano-powders.展开更多
Micron grade Sn powder, VG32 oil and active pharmaceutical were mixed and the Nanometer Sn lubricant additives were prepared. Nanometer additives with different Sn concentrations were used in Steel-brass Tribo-pair fo...Micron grade Sn powder, VG32 oil and active pharmaceutical were mixed and the Nanometer Sn lubricant additives were prepared. Nanometer additives with different Sn concentrations were used in Steel-brass Tribo-pair for friction and wear test. The activating method to nano-Sn and surface of brass samples was investigated, and the method to form relatively thick friction coating on samples was discussed. Surface elemental distribution, coating thickness and its surface appearance were analyzed with X-ray photoelectron spectrum (XPS), auger electron spectrum (AES) and scanning electron microscope (SEM) respectively. The result shows that the ultra-thick friction coating (approx 20 μm), with abundant tin and well combined with substrate, has formed on the brass sample. The friction coating revealed superior performance of friction reducing and antiwear properties. Therefore, the results possess practical significance to self-repair usage on steel-brass tribo-pair in mechanical systems.展开更多
Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differ...Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650~C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated un- der UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were k = 0.576 mg'm3·min^-1 and K = 0.048 m3/mg.展开更多
基金The work is supported in part by the National Natural Science Foundation of China(Grant Nos.62171483,82061148011)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ23F010004)+1 种基金Hangzhou Agricultural and Social Development Research Key Project(Grant No.20231203A08)Doctoral Initiation Program of the Tenth Affiliated Hospital,Southern Medical University(Grant No.K202308).
文摘The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
文摘A novel method was described for the production of silver nanoparticle by using nano-carbon as active template.Special ultrasonic condition was used to assure the active effect of the template and achieve an even and stable micro-reactor system,therefore yield uniform silver nanoparticle without obvious agglomeration.By laser granularity instrument measurement,the silver nanoparticles show a mean diameter of 20.4 nm and narrow distribution between 18.7 nm and 23.0 nm according to the optimum technology.Regular spherical morphology can be observed by transmission electron microscopy(TEM).X-ray diffraction analysis indicates that Ag+ is deoxidized to form metal Ag during producing precursor,subsequent calcinations promote phase transformation from nonholonomic crystal to complete cubic crystal,which is consistent with the standard JCPDS card of silver.The results reveal that the nano-carbon in active template system not only exerts micro-reactor and steric stabilization effect,but also acts as reducing agent during the reaction.
基金Funded by the Program for New Century Excellent Talents in University(No.NCET-12-0655)the Guangxi Natural Science Foundation(No.2014GXNSFFA118004)the Self-determined and Innovative Research Funds of WUT(Nos.136643002 and No.2013IV058)
文摘High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.
文摘SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reaction method.And the growth mechanism of the SrTiO_3 nano-crystals under the liquid condition with/without adding the surface active agent was investigated.It was found that adding the surface active agent contributes to the processing in which the ions gathering bodies transit to a more stable phase through the chemical reaction and form the flake SrTiO_3 nano-crystals.
基金The Key Program of the National Natural Science Foundation of China(No.51438003)the National Basic Research Program of China(973 Program)(No.2015CB655105)
文摘The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon which is harmful to cement composites. The structures and morphologies of these products are investigated by the Fourier transform infrared spectroscopy, X-ray diffraction, scanning/ transmission electron microscopy and N2 adsorption- desorption analyzer. The results show that the as-produced RHA and Si02 nanoparticles exist in amorphous phase without residual carbon, and exhibit porous structures with specific surface areas of 170.19 and 248. 67 m2 /g , respectively. The micro particles of RHA are aggregated by numerous loosely packed Si02 gel particles with the diameter of 50 to 100 nm. The Si02 nanoparticles are well dispersed with the average size of about 30 nm. Both the RHA and Si02 nanoparticles can significantly reduce the conductivity of saturated Ca(OH)2 solution and increase the early strength of the cement composites. They also exhibit high pozzolanic activity, indicating that they can be used as ecological nano mineral admixtures.
基金Funded bythe Center of Science Research, Zhejiang Universityof Technology of China
文摘The pozzolanic activity of nano-SiO2 and silica fume was comparatirely stndied by X-ray diffraction ( XRD ) , differential scanning calorimetry (DSC), scanning electron micrascopy (SEM) and the compressive , bond and bending streugths of hardened paste and concrete were also measured. Results indicate that the compressive strength development of the paste made from Ca(OH)2 and nano-SiO2, the reaction rate of Ca( OH)2 with nano- SiO2 and the velocity of C-S-H gel formation from Ca ( OH)2 with nano-SiO2 showed marked increases over those of Ca( OH)2 with silica fume. Furthermore, the bond strength at the interface between aggregate and hardened cement paste, and the bending strength of concrete incorporated with 3% .NS increased more than those with SF, especially at early ages. To sum up, the pozzolanic activity of nano-SiO2 was much greater than that of silica fume. The results suggest that with a small amount of nano-SiO2, the Ca( OH)2 crystal at the interface between hardened cement paste and aggregate at early ages may be effectively absorbed in high performance concrete.
基金Guangzhou Science and Technology Plan Projects, Guangzhou, China(10C62101593)
文摘In this study, nano-capsules of lansiumamide B (NCLB) was prepared by the microemulsion polymerization method to improve the nematicidal efficacy of lansiumamide B (LB). An optimal formulation was gained by orthogonal experiment design based on the encapsulation efficiency (E, %) value. The optimized NCLB were spherical and uniform under transmission electron microscopy (TEM). The mean particle size, zeta potential and E, were (38.50~0.64) nm, (-70.5~0.76) mV and (95.13± 1.16)%, respectively. The release profile indicated that the accumulated release of LB in NCLB reached up to 82% within 96 h. Effects of NCLB against Bursaphelenehus xylophilus and J2 ofMeloidogyne incognita were reported in this paper. The nematicidal activity of NCLB has been remarkably increased, with LCs0 values of 2.1407 mg L-1 and 19.3608 mg L-1, respectively, at 24 h after treatment. The disease progression and the average number of root knots of Ipomoea aquatica were 1.50 and 7.25, respectively, in the treatment of NCLB, at concentration of 200 mg L-1 significantly lower than the treatment of LB and ethoprophos. Compared to control, the treatments of NCLB, LB and ethoprophos leaded the disease progression to drop 68.42, 36.84 and 26.32%, respectively, and caused the average number of root knots to fall 83.94, 78.03 and 63.66%. These results suggested that NCLB, as a novel nematicides formulation, performed more efficient and longer effective maintenance against plant parasitic nematodes.
基金Funded by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No.AE201037the Foundation for Talent Recruitment of Yancheng Institute of Technology(No.XKR2011007)
文摘The nano-TiO_2 particles were prepared by liquid hydrolysis method and characterized using XRD. Its antibacterial activity against two representative bacterial, Escherichia eoli and Staphylococcus aureus, was also studied. The experimental results showed that the nano-TiO_2 caleinated at 600-700℃ contained the obvious anatase phase and exerted exeeUent antibacterial activity. The feature of antibacterial activity of nano- TiO_2 was non-strains specificity and exerted best antibacterial activity at concentration of 0.8 g/L.
文摘A new selenium source, Nano red elemental selenium (Nano-Se) was used to study the effect on the GPx activity of broiler chick kidney cells (BCKC) in vitro, Sodium selenite (Na_ 2 SeO_ 3 ) and seleno-1-methionine (Se-Met) were used as the controls. The results showed that the effects of three kinds of Se forms on the GPx activity of BCKC were accordant(p>0.05) compared with each other at 0.01,0.05 and 0.10 μmol/L Se concentrations treatments. In the range of 0.00-0.10 μmol/L Se concentrations, the GPx activity increased with elevation of Se concentrations in medium. For the three kinds of Se forms, the GPx activity reached the climax at 0.10 μmol/L Se concentration. At 0.20 and 0.30 μmol/L Se concentrations, the influnces of three kinds of Se forms were not accordant with one another. For Nano-Se, the GPx activity at 0.20 and 0.30 μmol/L Se concentrations remained the same as that at 0.10 μmol/L Se concentration treatment. For Se-Met, the GPx activity at 0.20 μmol/L Se concentration treatment remained the same with 0.10 μmol/L treatment; the GPx activity at 0.30 μmol/L Se concentration treatment was declined significantly(p<0.05) compared with 0.10 or 0.20 μmol/L treatment. For Na_ 2 SeO_ 3 , the GPx activity falled gradually with Se concentration increasing from 0.10 μmol/L to 0.30 μmol/L, and at 0.30 μmol/L Se concentration treatment, the GPx activity was less than the original of BCKC. The results implicated, on the GPx activity of BCKC in vitro, the ranking of width range of the most suitable Se concentration for nutrition curve of the three Se formes is Nano-Se>Se-Met>Na_ 2 SeO_ 3 .
基金supported by the Major State Basic Research Development Program of China (No.10332020)
文摘A facile solution processed strategy of synthesizing nano silver assembled on carbon nanotubes (CNTs) at room temperature was put forward. Activated carbon nanotubes were used as precursors for preparing silver-decorated nanotubes. The nature of the decorated nanotubes was studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The inert surfaces of carbon nanotubes were activated by introducing catalytic nuclei via an oxidation-sensitization-activation approach. Activated carbon nanotubes catalyzed the metal deposition specifically onto their surfaces upon immersion in electroless plating baths. The method produced nanotubes decorated with silver. The extent of silver decoration was found to be dependent on fabrication conditions. Dense nano silver assembled on nanotube surfaces could be obtained by keeping a low reaction rate in the solution phase. The results here show that this method is an efficient and simple means of achieving carbon nanotubes being assembled by nano metal.
文摘ZnO nano-particles were synthesized via an ammonical ammonium carbonate solution by precipitation method in presence of some additives such as urea, oleic and stearic acid. The morphology and crystallinity of the obtained zinc oxide particles depend critically on the type of additive which was used. Additives also affected the crystal orientation of precipitate nano-particles. SEM, XRD, BET and UV-visible were used to characterize morphology, microstructure, specific surface area and optical properties of the products.Photo-catalysis properties of the as-prepared ZnO powders were evaluated by degradation of methyl red(acid red) in aqueous solution exposed to UV-light. Results suggested a close relationship among the morphology,size and surface area on photo-catalysis and optical properties of the particles. The widest Egvalue(3.56 e V),highest degradation and decolorization efficiency(99%) were obtained from a sample with the smallest grain size(largest surface area) which were used urea as an additive.
文摘Currently,it is difficult to extract the depth feature of the frontal emergency stops dangerous activity signal,which leads to a decline in the accuracy and efficiency of the frontal emergency stops the dangerous activ-ity.Therefore,a recognition for frontal emergency stops dangerous activity algorithm based on Nano Internet of Things Sensor(NIoTS)and transfer learning is proposed.First,the NIoTS is installed in the athlete’s leg muscles to collect activity signals.Second,the noise component in the activity signal is removed using the de-noising method based on mathematical morphology.Finally,the depth feature of the activity signal is extracted through the deep transfer learning model,and the Euclidean distance between the extracted feature and the depth feature of the frontal emergency stops dangerous activity signal is compared.If the European distance is small,it can be judged as the frontal emergency stops dangerous activity,and the frontal emergency stops dangerous activity recognition is realized.The results show that the average time delay of activity signal acquisition of the algorithm is low,the signal-to-noise ratio of the action signal is high,and the activity signal mean square error is low.The variance of the frontal emergency stops dangerous activity recognition does not exceed 0.5.The difference between the appearance time of the dangerous activity and the recognition time of the algorithm is 0.15 s,it can accurately and quickly recognize the frontal emergency stops the dangerous activity.
文摘Technetium-99 is a radioactive isotope with a half-life of 2.13 × 105 year. 99Tc is a significant contaminant of concern to the world. For this reason, a detailed understanding of technetium chemistry is essential for the protecting the public and the environment especially after increasing the various applications and uses of isotopes in the medical practices. Therefore, treatment of waste increases prior to the safe discharge to the environment or the storage. The sorption of technetium in the form of pertechnetate on a nano manganese oxide loaded into activated carbon has been investigated. Nano manganese oxide (NMO) was synthesized from manganese chloride and potassium permanganate by co-precipitation and forming a new composite by loading a nanoparticle into a modified activated carbon by different ratios. Modifications of activated carbons using different concentrations of HNO3 (4 M, 6 M and 8 M) are used in prepared composites. Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) were used to characterize the prepared composites. The adsorption of anions from low level radioactive aqueous waste was examined using batch technique. Different parameters affecting on the adsorption process were studied for the removal of . The results revealed that NMO/AC (4 M, 6 M and 8 M) has a high adsorption efficiency (93.57%, 90.3% and 90.3%) respectively compared to NMO and AC which have a lower adsorption efficiency (41% and 38.9%) respectively. Moreover, the adsorption isotherm belonged to Freundlich model, the adsorption data followed pseudo-second order model and the thermodynamic study indicated that the adsorption of on Nano-composites was an exothermic and spontaneous process.
文摘The title complex [ NH3 CH2 CH ( NH2 ) CH3 ]2 [ M ( Ⅵ ) O2 ( OC6 H4 O)2 ] ( M = Mo0. 6 W0.4 ) was synthesized via a simple solution-phase ehemieal route. The determination of single erystal X-ray diffraction revealed that the title eompound is erystallized in a monoelinie system with P2( 1 )/n spaee group, a = 1. 0913(10) nm, b = 1. 0442(10) nm, c=1.8842(19) nm, α=90°, β=96.530(17)°, γ=90°, Z=4, and V=2.133(4) nm^3. The mononuelear anionie unit [ M ( Ⅵ ) O2 ( 0C6 H4 O) 2 ] 2 - displays ehiral pseudo-oetahedral [ MO6 ] eoordination geometry and is linked by ehiral eations via hydrogen bond and π…π stacking interaetion. The transmission electron microseopy images show that the title eomplex is eomprised of nano-partieles with diameters ranging from 20 to 50 nm. The NMR study shows the ^1H downfield chemical shifts of [ NH3 CHa Hb CH ( NH2 ) CH3 ]^+ eations in the title eomplex when it is mixed with adenosine-triphosphate( ATP), and the chemical shift difference between Ha and Hb is inereased greatly, and most of the eateeholate ligands dissociate from the eentral metal atoms. The DNA cleavage aetivity experiment reveals that DNA eleavage promoted by the title eomplex is lower than that by Na2 MoO4 whieh possesses antitumor propetty, but higher than that by Na2WO4.
基金the Natural Science Foundation of Hebei Province (203364)the Natural Science Foundation of Hebei University of Science and Technology (XL2006038)
文摘Nano-F-/Ce3+/TiO2 particles were prepared by hydrolysis of tetrabutyl titanate in a mixed CF3COOH-Ce(NO3)3-H2O solution. The photocatalytic decomposition of methylene blue in aqueous solution was used to evaluate their photocatalytic activities. The powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersion X-ray spectrum (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis. The results showed that F- and Ce3+ were doped into TiO2. The appropriate content of fluorine and cerium were 2.0% and 1.0% (atom fraction) respectively. The codoped nano-F-/Ce3+/TiO2 particles had higher BET specific surface area, smaller crystallite size and higher photocatalytic activity than those of undoped TiO2 particles.
文摘Yb 3+-doped TiO_2 composite nano-particles were prepared by the acid-catalyzed sol-gel method using Ti(OC_4H_9)_4 and Yb(NO_3)_3 as precursors. The effects of the amount of Yb 3+ doping and calcination temperature on the phase transformation, crystallite size, surface texture of the nanopowders were investigated by XRD and BET specific surface area. Their photocatalytic activities were evaluated using the photocatalytic degradation of methylene blue in aqueous solution as a probe reaction. At the interface, titanium ions substitute for ytterbium ions in the lattice of Yb_2O_3 to form Ti-O-Yb bonds, which cause distortion and inhibit the anatase to rutile phase transformation in TiO_2. The results indicate that Yb 3+-doping can enhance the photocatalytic activity of TiO_2 nano-powders as compared with pure TiO_2. 0.125%(mass fraction) Yb 3+ doped TiO_2 nano-powders calcined at 600 ℃ for 2 h show the highest photocatalytic activity. The increase in photoactivity is due to the effects of the factors such as crystal phase, crystallite size, surface chemical property, surface density of OH groups, and surface texture properties of the TiO_2 nano-powders.
文摘Micron grade Sn powder, VG32 oil and active pharmaceutical were mixed and the Nanometer Sn lubricant additives were prepared. Nanometer additives with different Sn concentrations were used in Steel-brass Tribo-pair for friction and wear test. The activating method to nano-Sn and surface of brass samples was investigated, and the method to form relatively thick friction coating on samples was discussed. Surface elemental distribution, coating thickness and its surface appearance were analyzed with X-ray photoelectron spectrum (XPS), auger electron spectrum (AES) and scanning electron microscope (SEM) respectively. The result shows that the ultra-thick friction coating (approx 20 μm), with abundant tin and well combined with substrate, has formed on the brass sample. The friction coating revealed superior performance of friction reducing and antiwear properties. Therefore, the results possess practical significance to self-repair usage on steel-brass tribo-pair in mechanical systems.
基金financially supported by the National Natural Science Foundation of China (No. 50708037)the National Science Fund for Excellent Young Scholars of China (No. 51522402)+1 种基金the Science and Technology Research Projects in Zhengzhou (No. 141PPTGG388)the National Innovation and Entrepreneurship Training Program of the Undergraduate (No. 201610078034)
文摘Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650~C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated un- der UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were k = 0.576 mg'm3·min^-1 and K = 0.048 m3/mg.