There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact inter...There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact interfaces between AgOx regions and the surface of the bulk Au as active working sites, while the other holds that charge transfer from Ag to Au in a surface Au‐Ag alloy causes the catalytic activity. One key point in examining these theories and determining the origin of the synergy in‐volves determining whether or not Ag exists as an oxide or as a metallic alloy on the Au surface. To confirm that enhanced activity results from contact between Ag2O and Au nanoparticles (NPs), a comparative study of catalytic CO oxidation over Au/Ag2O and Ag2O was performed in the present work, using a closed recirculation reaction system. A reaction mixture consisting of a stoichiometric composition of CO and O2 (CO/O2=2/1) was supplied to both catalysts and the resulting pressure decrease rates were tracked, from which the amounts of gas consumed as well as the quantity of CO2 produced were determined. The steady state reactions of both Au/Ag2O and Ag2O did not lead to any meaningful difference in the rate of pressure decrease during the oxidation. The pressure decrease over both catalysts was attributed to the reduction of surface lattice O on Ag2O by CO. The results obtained for Au/Ag2O are in good agreement with previous data resulting from the use of Ag‐contaminated Au powder (Ag/Au‐b) having an oxidized surfaces. This finding suggests that the perimeters between AgOx zones and the bulk Au surface may not function as active sites during CO oxidation. A review of previous results obtained with Ag/Au‐b specimens having so‐called steady state surfaces indicates that AgOx species in such materials are reduced to the 0 state to form a Ag‐Au alloy that provides the active sites.展开更多
The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
The apparent sulfur oxidation activities of four pure thermophilic archaea, Acidianus brierleyi (JCM 8954), Metallosphaera sedula (YN 23), Acidianus manzaensis (YN 25) and Sulfolobus metallicus (YN 24) and the...The apparent sulfur oxidation activities of four pure thermophilic archaea, Acidianus brierleyi (JCM 8954), Metallosphaera sedula (YN 23), Acidianus manzaensis (YN 25) and Sulfolobus metallicus (YN 24) and their mixture in bioleaching chalcopyrite were compared, which were characterized indirectly by the evolution of the cells concentration, pH value and sulfate ions concentration in solution. The results show that the mixed culture contributed significantly to the raising of leaching rate, which suggests that the mixed culture had a higher sulfur oxidation activity than the pure culture. Meanwhile, the results also indicate that the changes of parameters characterizing the sulfur oxidation activity of thermophilic archaea are often influenced by many factors, so it is hard to reflect accurately the specific sulfur oxidation activities among the different sulfur-oxidizing microbes when bioleaching chalcopyrite at different conditions. Accordingly, an efficient method to characterize microbial sulfur oxidation activity appears to be desirable.展开更多
Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. S...Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.展开更多
For further understanding of self-heating of coal, we tested the reactions of seven different ranks of coal under inert atmosphere. In the test, 50-gram of coal sample ranged from 0.18 mm to 0.38 mm was put into a spe...For further understanding of self-heating of coal, we tested the reactions of seven different ranks of coal under inert atmosphere. In the test, 50-gram of coal sample ranged from 0.18 mm to 0.38 mm was put into a special designed copper reaction vessel and let pure nitrogen to flow into the coal sample from the bottom at a rate of 100 mL/min. The programmed temperature enclosure was run at a programmed rate of 0.8 ~C/min. The concentration of the carbon oxides and the coal temperature were tested. The results show that the coal reactions under inert atmosphere can generate CO and C02. The reactions under inert atmosphere are affected by coal ranks, initial pore structure of coal and sulfur content. For low ranks of coal, the productions of carbon oxides are piecewise. The coal temperature is lower than the surrounding temperature throughout the reactions under inert atmosphere, but it rises quickly and reaches a crossing point temperature in the later stage under dry-air atmosphere. Based on the analysis, it indicates the self-reaction of initial active groups exists in the self-heating of coal besides the reactions in the two parallel reactions model. Spontaneous combustion of coal is due to both the oxidation heat accumulation and the chain reaction. A new reaction model of self-heating of coal was orooosed.展开更多
Bioleaching of sulfide minerals by bacteria, mainly Thiobacillus ferrooxidans(T.f.) and Thiobacillus thiooxidans, plays an important role in hydrometallurgy because of its economic and environmental attractions. The s...Bioleaching of sulfide minerals by bacteria, mainly Thiobacillus ferrooxidans(T.f.) and Thiobacillus thiooxidans, plays an important role in hydrometallurgy because of its economic and environmental attractions. The surveys of production process and the bacterial oxidation activity in the heap bioleaching were investigated. The results show that pH value is high, bacteria biomass and ferric concentration are low, generation time (above 7.13 h) is long in leachate, and less bacteria are adsorbed on the ores. The bacteria in the leachate exposing on the surface and connecting with mineral, have much faster oxidation rate of Fe(Ⅱ) and shorter generation time, compared with those which are in the reservoir for a long time. There is diversity for oxidation activity of Fe(Ⅱ), while there is no diversity for oxidation of sulfur. So it is advisable to add sulfuric acid to degrade pH value to 2.0, add nutrients and shorten recycling time of leachate, so as to enhance bacteria concentration of leachate and the leaching efficiency.展开更多
The oxidation of lignite and bituminous coal samples modified by 5 wt%(in terms of dry salt)addition of copper salts Cu(NO_(3))_(2),CuSO_(4),and Cu(CH_(3)COO)_(2) was studied.The samples’reactivity was studied by the...The oxidation of lignite and bituminous coal samples modified by 5 wt%(in terms of dry salt)addition of copper salts Cu(NO_(3))_(2),CuSO_(4),and Cu(CH_(3)COO)_(2) was studied.The samples’reactivity was studied by thermogravimetry within a temperature range of 45–600℃ at a heating rate of 2.5℃/min in an oxidizing environment.The introduction of activating additives has resulted in a significant decrease in the temperature of intense oxidation onset(ΔT_(i)=20/94℃),in a reduction in the sample residence time in the volatile matter release region(Δt_(e)=2/22 min)and the total duration of the coal combustible mass oxidation(Δt_(f)=8/14 min).The Friedman method was used to calculate the activation energy values for the oxidation process of the modified samples.The maximum change in activation energy values was observed for the bituminous coal sample.The possible mechanism behind the action of the copper-salt additives,which activate the oxidation of lignite and bituminous coal,is discussed.According to the data of mass spectrometric analysis,the concentration of NOx in the reaction products decreases as the temperature of the activated oxidation process is shifted towards the low-temperature region.展开更多
Cupric oxide (CuO) and copper-cuprous oxide (Cu-Cu2O) nanoparticles were prepared by a simple hydrothermal method for the synthesis of diethyi carbonate (DEC) from ethanol. During these syntheses, varying NaOH a...Cupric oxide (CuO) and copper-cuprous oxide (Cu-Cu2O) nanoparticles were prepared by a simple hydrothermal method for the synthesis of diethyi carbonate (DEC) from ethanol. During these syntheses, varying NaOH and glucose concentrations were applied to explore and pinpoint the active species. It was found that PdCl2/CuO and PdCI2/Cu-Cu2O both catalysts exhibited good thermal stability and morphology. The results of catalytic tests showed that the catalysts prepared with 5 mol/L NaOH show superior catalytic performances because of their lower extent of agglomeration. It is noteworthy that the PdC12/Cu-Cu2O catalysts were the most active, especially the PdCl2/Cu-Cu2O catalyst prepared with 10 mmol glucose and having a higher Cu2O concentration. In Pd(ll)-Cu(II) (PdCl2/CuO) catalysts, there is an induction period, during which Pd(II) is reduced to Pd(0), that must occur prior to electron transfer between Pd and Cu, and this can slow the catalytic reaction. To further pinpoint the active species, PdCl2/Cu-Cu2O catalysts with different Cu2O contents were prepared by controlling the dosages of glucose. The maximum DEC yield obtained with these catalysts was 151.9 mg.g-1.h-1, corresponding to an ethanol conversion of 7.2% and 97.9% DEC selectivity on an ethanol basis. Therefore, it was concluded that Cu+ was the active species in this catalytic system, possibly because a higher proportion of Cu+ reduces the Pd2+ concentration and limits the CO oxidation side reaction, thus increasing DEC selectivity. In addition, Cu+ promotes electron transfer between Pd and Cu without an induction period, which could also promote the catalytic activity.展开更多
In this study,a series of Co_3O_4/ mildly oxidized graphite oxide(mGO) nanocatalysts(Co_3O_4/ mGO-l,Co_3O_4/ mGO-2 and Co_3O_4/mGO-3) were synthesized through solvothermal method and used as a mediator for the heterog...In this study,a series of Co_3O_4/ mildly oxidized graphite oxide(mGO) nanocatalysts(Co_3O_4/ mGO-l,Co_3O_4/ mGO-2 and Co_3O_4/mGO-3) were synthesized through solvothermal method and used as a mediator for the heterogeneous peroxymonosulfate(PMS)activation.The performance of CO_3O_4 / mGO/PMS system was investigated using acid orange 7(AO7).Results showed that Co_3O_4/mGO-3 had the best degradation efficiency of AO7 and the removal rate was above 90%in about 6 min.The phenomenon indicated the catalytic activity of Co_3O_4/mGO composites was related to the oxidation degree of graphite oxide(GO).In addition,experiments showed the content of Co_3O_4 had an effect on the catalytic activity.The composites were characterized with X-ray powder diffraction(XRD),FTIR,Raman,X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM).According to the charactrization and synergistic catalytic mechanism,the generation of Co—OH complexes found to be the initial step to activate PMS in the heterogeneous system of Co_3O_4/mGO hybrid.展开更多
The relations between catalytic activities and compositions of the systems Mg_xZn_(1-x)Fe_2O_4, Co_xZn_(1-x)Fe_2O_4, Co_xMg_(1-x)Fe_2O_4, Cd_xZn_(1-x)Fe_2O_4 and Mg_xZn_(1-x)Fe_2O_4·0.17Fe_2O_3 have been studied ...The relations between catalytic activities and compositions of the systems Mg_xZn_(1-x)Fe_2O_4, Co_xZn_(1-x)Fe_2O_4, Co_xMg_(1-x)Fe_2O_4, Cd_xZn_(1-x)Fe_2O_4 and Mg_xZn_(1-x)Fe_2O_4·0.17Fe_2O_3 have been studied by flow differential reactor, XRD, and derivative IR techniques. It has been found that the appropriate normal-inverse spinel combination substantially increases the activity for the title raction. The structure of the active site and the role of the bivalent cation in the title catalyst have been inferred.展开更多
This paper studied the active-to-passive oxidative mechanism of C/SiC composite under high temperature and oxidative conditions. An analytic model and computational method were established based on the process of gas ...This paper studied the active-to-passive oxidative mechanism of C/SiC composite under high temperature and oxidative conditions. An analytic model and computational method were established based on the process of gas diffusion in boundary layer and the equilibrium relations in surface chemical reactions. Simultaneously, an engineering equation to predict the oxygen partial pressure of active-to-passive transition was derived under the specific temperature zone. The results indicated that the active-to-passive oxidation transition of C/SiC is closely related to the composition of the material. At certain temperature and oxygen partial pressure conditions, the composite with high carbon content is prone to cause active oxidation which is negative to the oxidation resistance of the material.展开更多
An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det...An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.展开更多
Rechargeable Na-O2 batteries have attracted significant attention as energy storage devices owing to their theoretically high energy storage capacity and the natural abundance of sodium. However, practical application...Rechargeable Na-O2 batteries have attracted significant attention as energy storage devices owing to their theoretically high energy storage capacity and the natural abundance of sodium. However, practical applications of this type of battery still suffer from low specific capability, poor cycle sta- bility, instable electrolytes, and unstable polymer binders. Herein, we report a facile method of synthesizing binder free and flexible cathodes with C0304 nanowire arrays vertically grown onto carbon textiles. When employed as a cathode for Na-O2 batteries, this cathode exhibits superior performance, including a reduction of charge overpotential, high specific capacity (4687 mAh/g), and cycle stability up to 62 cycles. These enhanced performance can be attributed to the synergistic effect of the porosity and catalytic activity of the C0304 nanowire catalyst.展开更多
Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization met...Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization method. Through transmission electron microscopy, powder X-ray di raction, and X-ray photoelectron spectroscopy, the role of the carbon supports for the catalytic performances of Pd/C catalysts was examined in selective hydrogenation of acetylene. The results indicate that Pd/AC exhibited higher activity and selectivity than Pd/GO and Pd/rGO in the gas phase selective hydrogenation of acetylene. Thermal and chemical treatment of AC supports also have some effect on the catalytic performance of Pd/AC catalysts. The differences in the activity and selectivity of various Pd/C catalysts were partly attributed to the metal-support interaction.展开更多
The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great co...The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.展开更多
The wastewater discharged from tanneries lack biodegradability due to the presence of recalcitrant compounds at significant concentration. The focal theme of the present investigation was to use chemo-autotrophic acti...The wastewater discharged from tanneries lack biodegradability due to the presence of recalcitrant compounds at significant concentration. The focal theme of the present investigation was to use chemo-autotrophic activated carbon oxidation(CAACO) reactor, an immobilized cell reactor using chemoautotrophs for the treatment of tannery wastewater. The treatment scheme comprised of anaerobic treatment, sand filtration, and CAACO reactor, which remove COD, BOD, TOC, VFA and sulphides respectively by 86%, 95%, 81%, 71% and 100%. Rice bran mesoporous activated carbon prepared indigenously and was used for immobilization of chemoautotrophs. The degradation of xenobiotic compounds by CAACO was confirmed through HPLC and FT-IR techniques.展开更多
MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 ca...MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.展开更多
The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron ...The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.展开更多
A hydroponic study was conducted to determine the effects of selenium(Se: 0, 3, 6 μmol L^-1) on senescence-related oxidative stress in garlic plants grown under two sulfur(S) levels. We evaluated the yields of p...A hydroponic study was conducted to determine the effects of selenium(Se: 0, 3, 6 μmol L^-1) on senescence-related oxidative stress in garlic plants grown under two sulfur(S) levels. We evaluated the yields of plants harvested at 160 and 200 days after sowing. Plants grown under a low Se dose(0.3 μmol L^-1) at low S level showed higher yields(12.0% increase in fresh weight yield, 13.7% increase in dry weight yield) than the controls, despite a decrease in chlorophyll concentration. Compared with control plants, the Se-treated plants showed lower levels of lipid peroxidation. The Se-treated plants also showed higher activities of glut athione peroxidase and catalase, but lower superoxide dismutase activities. Changes in Fv/Fm values and proline contents were affected more strongly by S than by Se. On the basis of our results, we can conclude that Se plays a key role in the antioxidant systems in garlic seedlings. It delays senescence by alleviating the peroxide stress, but it can be toxic at high levels. A high S level may increase tolerance to high Se concentrations through reducing Se accumulation in plants.展开更多
This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant ...This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H2 temperature-programmed reduction(H2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO2. After loading Pt, the more active oxygen on CeO2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt^(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt^(δ+) species may contribute to the high activity at elevated temperature.展开更多
基金supported by CREST project(Catalyst Design of Gold Clusters through Junction Effect with Metal oxides,Carbons,and Polymers)sponsored by Japan Science and Technology Agency(JST)~~
文摘There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact interfaces between AgOx regions and the surface of the bulk Au as active working sites, while the other holds that charge transfer from Ag to Au in a surface Au‐Ag alloy causes the catalytic activity. One key point in examining these theories and determining the origin of the synergy in‐volves determining whether or not Ag exists as an oxide or as a metallic alloy on the Au surface. To confirm that enhanced activity results from contact between Ag2O and Au nanoparticles (NPs), a comparative study of catalytic CO oxidation over Au/Ag2O and Ag2O was performed in the present work, using a closed recirculation reaction system. A reaction mixture consisting of a stoichiometric composition of CO and O2 (CO/O2=2/1) was supplied to both catalysts and the resulting pressure decrease rates were tracked, from which the amounts of gas consumed as well as the quantity of CO2 produced were determined. The steady state reactions of both Au/Ag2O and Ag2O did not lead to any meaningful difference in the rate of pressure decrease during the oxidation. The pressure decrease over both catalysts was attributed to the reduction of surface lattice O on Ag2O by CO. The results obtained for Au/Ag2O are in good agreement with previous data resulting from the use of Ag‐contaminated Au powder (Ag/Au‐b) having an oxidized surfaces. This finding suggests that the perimeters between AgOx zones and the bulk Au surface may not function as active sites during CO oxidation. A review of previous results obtained with Ag/Au‐b specimens having so‐called steady state surfaces indicates that AgOx species in such materials are reduced to the 0 state to form a Ag‐Au alloy that provides the active sites.
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.
基金Project(50974140) supported by the National Natural Science Foundation of ChinaProject(20090162110054) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The apparent sulfur oxidation activities of four pure thermophilic archaea, Acidianus brierleyi (JCM 8954), Metallosphaera sedula (YN 23), Acidianus manzaensis (YN 25) and Sulfolobus metallicus (YN 24) and their mixture in bioleaching chalcopyrite were compared, which were characterized indirectly by the evolution of the cells concentration, pH value and sulfate ions concentration in solution. The results show that the mixed culture contributed significantly to the raising of leaching rate, which suggests that the mixed culture had a higher sulfur oxidation activity than the pure culture. Meanwhile, the results also indicate that the changes of parameters characterizing the sulfur oxidation activity of thermophilic archaea are often influenced by many factors, so it is hard to reflect accurately the specific sulfur oxidation activities among the different sulfur-oxidizing microbes when bioleaching chalcopyrite at different conditions. Accordingly, an efficient method to characterize microbial sulfur oxidation activity appears to be desirable.
基金supported by the National Natural Science Foundation of China (21263015)the Education Department of Jiangxi Province (KJLD14005)the Natural Science Foundation of Jiangxi Province(20151BBE50006,20122BAB203009)~~
文摘Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.
基金Financial supports for this research provided by the National Natural Science Foundation of China (No. 50927403)the Fundamental Research Funds for the Central Universities (No.2011RC06)the Jiangsu Natural Science Foundation (No.BK2009004)
文摘For further understanding of self-heating of coal, we tested the reactions of seven different ranks of coal under inert atmosphere. In the test, 50-gram of coal sample ranged from 0.18 mm to 0.38 mm was put into a special designed copper reaction vessel and let pure nitrogen to flow into the coal sample from the bottom at a rate of 100 mL/min. The programmed temperature enclosure was run at a programmed rate of 0.8 ~C/min. The concentration of the carbon oxides and the coal temperature were tested. The results show that the coal reactions under inert atmosphere can generate CO and C02. The reactions under inert atmosphere are affected by coal ranks, initial pore structure of coal and sulfur content. For low ranks of coal, the productions of carbon oxides are piecewise. The coal temperature is lower than the surrounding temperature throughout the reactions under inert atmosphere, but it rises quickly and reaches a crossing point temperature in the later stage under dry-air atmosphere. Based on the analysis, it indicates the self-reaction of initial active groups exists in the self-heating of coal besides the reactions in the two parallel reactions model. Spontaneous combustion of coal is due to both the oxidation heat accumulation and the chain reaction. A new reaction model of self-heating of coal was orooosed.
文摘Bioleaching of sulfide minerals by bacteria, mainly Thiobacillus ferrooxidans(T.f.) and Thiobacillus thiooxidans, plays an important role in hydrometallurgy because of its economic and environmental attractions. The surveys of production process and the bacterial oxidation activity in the heap bioleaching were investigated. The results show that pH value is high, bacteria biomass and ferric concentration are low, generation time (above 7.13 h) is long in leachate, and less bacteria are adsorbed on the ores. The bacteria in the leachate exposing on the surface and connecting with mineral, have much faster oxidation rate of Fe(Ⅱ) and shorter generation time, compared with those which are in the reservoir for a long time. There is diversity for oxidation activity of Fe(Ⅱ), while there is no diversity for oxidation of sulfur. So it is advisable to add sulfuric acid to degrade pH value to 2.0, add nutrients and shorten recycling time of leachate, so as to enhance bacteria concentration of leachate and the leaching efficiency.
基金This work was supported by the Ministry of Science and Higher Education of the Russian Federation(projects No.FSWW-2020-0022 and AAAA-A17-117041710086-6).
文摘The oxidation of lignite and bituminous coal samples modified by 5 wt%(in terms of dry salt)addition of copper salts Cu(NO_(3))_(2),CuSO_(4),and Cu(CH_(3)COO)_(2) was studied.The samples’reactivity was studied by thermogravimetry within a temperature range of 45–600℃ at a heating rate of 2.5℃/min in an oxidizing environment.The introduction of activating additives has resulted in a significant decrease in the temperature of intense oxidation onset(ΔT_(i)=20/94℃),in a reduction in the sample residence time in the volatile matter release region(Δt_(e)=2/22 min)and the total duration of the coal combustible mass oxidation(Δt_(f)=8/14 min).The Friedman method was used to calculate the activation energy values for the oxidation process of the modified samples.The maximum change in activation energy values was observed for the bituminous coal sample.The possible mechanism behind the action of the copper-salt additives,which activate the oxidation of lignite and bituminous coal,is discussed.According to the data of mass spectrometric analysis,the concentration of NOx in the reaction products decreases as the temperature of the activated oxidation process is shifted towards the low-temperature region.
基金supported by the National Natural Science Foundation of China(21106054)~~
文摘Cupric oxide (CuO) and copper-cuprous oxide (Cu-Cu2O) nanoparticles were prepared by a simple hydrothermal method for the synthesis of diethyi carbonate (DEC) from ethanol. During these syntheses, varying NaOH and glucose concentrations were applied to explore and pinpoint the active species. It was found that PdCl2/CuO and PdCI2/Cu-Cu2O both catalysts exhibited good thermal stability and morphology. The results of catalytic tests showed that the catalysts prepared with 5 mol/L NaOH show superior catalytic performances because of their lower extent of agglomeration. It is noteworthy that the PdC12/Cu-Cu2O catalysts were the most active, especially the PdCl2/Cu-Cu2O catalyst prepared with 10 mmol glucose and having a higher Cu2O concentration. In Pd(ll)-Cu(II) (PdCl2/CuO) catalysts, there is an induction period, during which Pd(II) is reduced to Pd(0), that must occur prior to electron transfer between Pd and Cu, and this can slow the catalytic reaction. To further pinpoint the active species, PdCl2/Cu-Cu2O catalysts with different Cu2O contents were prepared by controlling the dosages of glucose. The maximum DEC yield obtained with these catalysts was 151.9 mg.g-1.h-1, corresponding to an ethanol conversion of 7.2% and 97.9% DEC selectivity on an ethanol basis. Therefore, it was concluded that Cu+ was the active species in this catalytic system, possibly because a higher proportion of Cu+ reduces the Pd2+ concentration and limits the CO oxidation side reaction, thus increasing DEC selectivity. In addition, Cu+ promotes electron transfer between Pd and Cu without an induction period, which could also promote the catalytic activity.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.12ZZ069)Research Fund for the Doctoral Program of Higher Education,China(No.20130075110006)
文摘In this study,a series of Co_3O_4/ mildly oxidized graphite oxide(mGO) nanocatalysts(Co_3O_4/ mGO-l,Co_3O_4/ mGO-2 and Co_3O_4/mGO-3) were synthesized through solvothermal method and used as a mediator for the heterogeneous peroxymonosulfate(PMS)activation.The performance of CO_3O_4 / mGO/PMS system was investigated using acid orange 7(AO7).Results showed that Co_3O_4/mGO-3 had the best degradation efficiency of AO7 and the removal rate was above 90%in about 6 min.The phenomenon indicated the catalytic activity of Co_3O_4/mGO composites was related to the oxidation degree of graphite oxide(GO).In addition,experiments showed the content of Co_3O_4 had an effect on the catalytic activity.The composites were characterized with X-ray powder diffraction(XRD),FTIR,Raman,X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM).According to the charactrization and synergistic catalytic mechanism,the generation of Co—OH complexes found to be the initial step to activate PMS in the heterogeneous system of Co_3O_4/mGO hybrid.
基金Project supported by National Natural Science Foundation of P. R. China.
文摘The relations between catalytic activities and compositions of the systems Mg_xZn_(1-x)Fe_2O_4, Co_xZn_(1-x)Fe_2O_4, Co_xMg_(1-x)Fe_2O_4, Cd_xZn_(1-x)Fe_2O_4 and Mg_xZn_(1-x)Fe_2O_4·0.17Fe_2O_3 have been studied by flow differential reactor, XRD, and derivative IR techniques. It has been found that the appropriate normal-inverse spinel combination substantially increases the activity for the title raction. The structure of the active site and the role of the bivalent cation in the title catalyst have been inferred.
基金supported by the National Natural Science Foundation of China (Grant No. 11172284)the International Science and Technology Cooperative Project from Ministry of Science and Technology (GrantNo. 2013DFA30820)
文摘This paper studied the active-to-passive oxidative mechanism of C/SiC composite under high temperature and oxidative conditions. An analytic model and computational method were established based on the process of gas diffusion in boundary layer and the equilibrium relations in surface chemical reactions. Simultaneously, an engineering equation to predict the oxygen partial pressure of active-to-passive transition was derived under the specific temperature zone. The results indicated that the active-to-passive oxidation transition of C/SiC is closely related to the composition of the material. At certain temperature and oxygen partial pressure conditions, the composite with high carbon content is prone to cause active oxidation which is negative to the oxidation resistance of the material.
基金supported by the National Natural Science Foundation of China(21007033)the Fundamental Research Funds of Shandong University(2015JC017)~~
文摘An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.
基金supported by the 100 Talents Programme of the Chinese Academy of Sciencesthe National Basic Research Program of China(973 Program,2014CB932300,2012CB215500)the National Natural Science Foundation of China(21422108,51472232,51301160)~~
文摘Rechargeable Na-O2 batteries have attracted significant attention as energy storage devices owing to their theoretically high energy storage capacity and the natural abundance of sodium. However, practical applications of this type of battery still suffer from low specific capability, poor cycle sta- bility, instable electrolytes, and unstable polymer binders. Herein, we report a facile method of synthesizing binder free and flexible cathodes with C0304 nanowire arrays vertically grown onto carbon textiles. When employed as a cathode for Na-O2 batteries, this cathode exhibits superior performance, including a reduction of charge overpotential, high specific capacity (4687 mAh/g), and cycle stability up to 62 cycles. These enhanced performance can be attributed to the synergistic effect of the porosity and catalytic activity of the C0304 nanowire catalyst.
文摘Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization method. Through transmission electron microscopy, powder X-ray di raction, and X-ray photoelectron spectroscopy, the role of the carbon supports for the catalytic performances of Pd/C catalysts was examined in selective hydrogenation of acetylene. The results indicate that Pd/AC exhibited higher activity and selectivity than Pd/GO and Pd/rGO in the gas phase selective hydrogenation of acetylene. Thermal and chemical treatment of AC supports also have some effect on the catalytic performance of Pd/AC catalysts. The differences in the activity and selectivity of various Pd/C catalysts were partly attributed to the metal-support interaction.
基金financial support from the National Natural Science Foundation of China(grant no.21406052the Program for the Outstanding Young Talents of Hebei Province(grant no.BJ2014010)the Scientific Research Foundation for Selected Overseas Chinese Scholars,Ministry of Human Resources and Social Security of China(grant no.CG2015003002)
文摘The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.
文摘The wastewater discharged from tanneries lack biodegradability due to the presence of recalcitrant compounds at significant concentration. The focal theme of the present investigation was to use chemo-autotrophic activated carbon oxidation(CAACO) reactor, an immobilized cell reactor using chemoautotrophs for the treatment of tannery wastewater. The treatment scheme comprised of anaerobic treatment, sand filtration, and CAACO reactor, which remove COD, BOD, TOC, VFA and sulphides respectively by 86%, 95%, 81%, 71% and 100%. Rice bran mesoporous activated carbon prepared indigenously and was used for immobilization of chemoautotrophs. The degradation of xenobiotic compounds by CAACO was confirmed through HPLC and FT-IR techniques.
基金Project supported by the National key research and development program(2016YFC0204901)the National Natural Science Foundation of China(21576207)the introduction of talent and technology cooperation plan of Tianjin(14RCGFGX00849)
文摘MnO_x-CeO_2 catalysts were synthesized to investigate the active sites for NO oxidation by varying the calcination temperature. XRD and TEM results showed that cubic CeO_2 and amorphous MnO_x existed in MnO_x-CeO_2 catalysts. High temperature calcination caused the sintering of amorphous MnO_x and transforming to bulk crystalline Mn_2O_3, H_2-TPR and XPS results suggested the valence of Mn in MnO_x-CeO_2 was higher than pure MnO_x, and decreased with the increasing calcination temperature, The turnover frequency(TOF) was calculated based on the initial reducibility according to H_2-TPR quantitation and kinetic study. The TOF results indicated that the initial reducibility of amorphous MnO_x with high valence manganese ions was equivalent to the active sites for NO oxidation. It can be inferred that the amorphous MnO_x plays a key role in low-temperature NO oxidation.
文摘The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.
基金funded by the Agricultural Research Special Funds for Public Welfare Projects from the Ministry of Agriculture of the People’s Republic of China (200903018)
文摘A hydroponic study was conducted to determine the effects of selenium(Se: 0, 3, 6 μmol L^-1) on senescence-related oxidative stress in garlic plants grown under two sulfur(S) levels. We evaluated the yields of plants harvested at 160 and 200 days after sowing. Plants grown under a low Se dose(0.3 μmol L^-1) at low S level showed higher yields(12.0% increase in fresh weight yield, 13.7% increase in dry weight yield) than the controls, despite a decrease in chlorophyll concentration. Compared with control plants, the Se-treated plants showed lower levels of lipid peroxidation. The Se-treated plants also showed higher activities of glut athione peroxidase and catalase, but lower superoxide dismutase activities. Changes in Fv/Fm values and proline contents were affected more strongly by S than by Se. On the basis of our results, we can conclude that Se plays a key role in the antioxidant systems in garlic seedlings. It delays senescence by alleviating the peroxide stress, but it can be toxic at high levels. A high S level may increase tolerance to high Se concentrations through reducing Se accumulation in plants.
基金Project supported by the National key research and development program(2016YFC0204901)the National Natural Science Foundation of China(21576207)+1 种基金the Introduction Of Talent and Technology Cooperation Plan Of Tianjin(14RCGFGX00849)GM Global Research&Development(GAC 1539)
文摘This study was focused on the influence of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation. A series of CeO2 supports with different contents of active oxygen were obtained by adding surfactant at different synthesis steps. 0.25 wt% Pt was loaded on these CeO2 supports by incipientwetness impregnation methods. The catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), H2 temperature-programmed reduction(H2-TPR), dynamic oxygen storage capacity(DOSC) and in-situ DRIFTS technologies. For S-f supports, the surfactant was added into the solution before spray-drying in the synthesis process, which facilitates more active oxygen formation on the surface of CeO2. After loading Pt, the more active oxygen on CeO2 contributes to dispersing Pt species and enhancing the CO oxidation activity. As for the aged samples,Pt-R-h shows the highest activity above 190 ℃ because of the presence of more partly oxidized Pt^(δ+) species. Thus the activity is also influenced by the states of Pt and the Pt^(δ+) species may contribute to the high activity at elevated temperature.