Using sea surface salinity(SSS)observation from the soil moisture active passive(SMAP)mission,we analyzed the spatial distribution and seasonal variation of SSS around Changjiang River(Yangtze River)Estuary for the pe...Using sea surface salinity(SSS)observation from the soil moisture active passive(SMAP)mission,we analyzed the spatial distribution and seasonal variation of SSS around Changjiang River(Yangtze River)Estuary for the period of September 2015 to August 2018.First,we found that the SSS from SMAP is more accurate than soil moisture and ocean salinity(SMOS)mission observation when comparing with the in situ observations.Then,the SSS signature of the Changjiang River freshwater was analyzed using SMAP data and the river discharge data from the Datong hydrological station.The results show that the SSS around the Changjiang River Estuary is significantly lower than that of the open ocean,and shows significant seasonal variation.The minimum value of SSS appears in July and maximum SSS in December.The root mean square difference of daily SSS between SMAP observation and in situ observation is around 3 in both summer and winter,which is much lower than the annual range of SSS variation.In summer,the diffusion direction of the Changjiang River freshwater depicted by SSS from SMAP is consistent with the path of freshwater from in situ observation,suggesting that SMAP observation may be used in coastal seas in monitoring the diffusion and advection of freshwater discharge.展开更多
To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation mo...To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation modes from adjusting,landing,to roving.Compared with our preceding works,the adjusting mode with three rotations(3R)provides a totally novel exploration approach to geometrically matching and securely arriving at complex terrains dangerous to visit currently;the landing mode is redefined by two rotations one translation(2R1T),identical with the tried-and-tested Apollo and Chang'E landers to enhance survivability via reasonable touchdown buffering motion;roving mode also utilizes 2R1T motion for good motion and force properties.The reconfigurable mechanism theory is first brought into synthesizing legged mobile lander integrating active and passive metamorphoses,composed of two types of metamorphic joints and metamorphic execution and transmission mechanisms.To reveal metamorphic principles with multiple finite motions,the finite screw theory is developed to present the procedure from unified mathematical representation,modes and source phase derivations,metamorphic joint and limb design,to final structure assembly.To identify the prototype topology,the 3D optimal selection matrix method is proposed considering three operation modes,five evaluation criteria,and two topological subsystems.Finally,simulation verifies the whole task implementation process to ensure the reasonability of design.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary desig...HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary design based on proven technology of the existing pressurized water reactor NPP;on the other hand,it incorporates advanced design features including a 177-fuel-assembly core loaded with CF3 fuel assemblies,active and passive safety systems,comprehensive severe accident prevention and mitigation measures,enhanced protection against external events,and improved emergency response capability.Extensive verification experiments and tests have been performed for critical innovative improvements on passive systems,the reactor core,and the main equipment.The design of HPR1000fulfills the international utility requirements for advanced light water reactors and the latest nuclear safety requirements,and addresses the safety issues relevant to the Fukushima accident.Along with its outstanding safety and economy,HPR1000 provides an excellent and practicable solution for both domestic and international nuclear power markets.展开更多
In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations...In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.展开更多
Stroke patients always spontaneously do some learning and training of motor functions; however, learning and training are not prompt and right, while patients do not have enough activity amounts. Active and passive mo...Stroke patients always spontaneously do some learning and training of motor functions; however, learning and training are not prompt and right, while patients do not have enough activity amounts. Active and passive motor training apparatus is aimed directly at lower limb training so as to stimulate nerve function through stimulating muscular movement. Based on motor mileage, motor time, various power supplies and velocity of active and passive training apparatus, we can understand the training condition and adjust training program. OBJECTIVE: To observe the effects of grade-III rehabilitation training combining with active and passive training apparatus on lower limb function, muscle strength and activity of daily living (ADL) in stroke patients during recovery period. DESIGN: Contrast observation. SETTING: Department of Rehabilitation, Jilin Academic Institute of Traditional Chinese Medicine. PARTICIPANTS: A total of 80 patients with stroke-induced hemiplegia after stabilizing vital signs for 2 weeks were selected from Department of Rehabilitation, Jilin Academic Institute of Traditional Chinese Medicine from January to June 2007. There were 47 males and 33 females, and their ages ranged from 41 to 75 years. All patients met the diagnostic criteria of the Fourth National Cerebrovascular Disease Academic Meeting in 1995 and were diagnosed as cerebral hemorrhage or cerebral infarction through CT or MRI examinations in clinic. Patients and their parents provided the confirmed consent. Based on therapeutic orders of hospitalization, patients were randomly divided into treatment group and control group with 40 patients in each group. METHODS: Patients in the control group received physical therapy and occupational therapy combining with rehabilitative treatment based on grade-III rehabilitative treatment program, which was set by the National Cerebrovascular Disease Topic Group. In addition, patients in the treatment group were trained with active and passive motor training apparatus based on therapeutic procedures in the control group. The active and passive motor training apparatus was designed as the therapeutic style of nervous system; otherwise, the treatment was performed once a day, 30 minutes once and 6 times per week. Four weeks were regarded as a course. MAIN OUTCOME MEASURES: Before treatment, at 2 weeks after treatment and after the first course, bare-handed muscle strength examination was used to check muscle strength and muscular tension; in addition, simple Fugl-Meyer assessment (FMA) and diagnostic criteria which were set by the Fourth National Cerebrovascular Disease Academic Meeting were used to evaluate motor function of limbs and total ADL. RESULTS: All 80 stroke patients were involved in the final analysis. ① Muscle strength of lower limbs was improved in both treatment group and control group. After the first course, muscle strength in the treatment group was obviously superior to that in the control group ( x^2=6.64, P 〈 0.05). ② After the first course, Fugl-Meyer scores in the treatment group were higher than those in the control group, and there was significant difference (t =2.82, P 〈 0.05). ③ Muscular tension of lower limbs was not changed in both treatment group and control group after treatment (P 〉 0.05). ④ After the first course, ADL in the treatment group was superior to that in the control group (P 〈 0.05). Among patients in the treatment group, 24 cases (60%) had obvious progress, 16 (40%) had progress, and 0 (0%) did not have any changes. On the other hand, among patients in the control group, 13 cases (32.5%) had obvious progress, 26 (65%) had progress, and 1 (2.5%) did not have any changes. CONCLUSION: Rehabilitation training combining with active and passive motor training apparatus can promote the recovery of lower limb disorder, increase muscle strength, control spasm, improve ADL and cause satisfactorily clinical effects in stroke patients during recovery period.展开更多
The present article deals with the effective use of film clips in the classroom to encourage active viewing. It argues that viewing material and activities should meet the needs and interest of learners and lead towar...The present article deals with the effective use of film clips in the classroom to encourage active viewing. It argues that viewing material and activities should meet the needs and interest of learners and lead towards a product that can benefit their language-learning capabilities. The selection of right film clips and the designing of appropriate tasks are discussed in detail.展开更多
Roughness-induced emission from ocean surfaces is one of the main issues that affects the retrieval accuracy of sea surface salinity remote sensing.In previous studies,the correction of roughness effect mainly depende...Roughness-induced emission from ocean surfaces is one of the main issues that affects the retrieval accuracy of sea surface salinity remote sensing.In previous studies,the correction of roughness effect mainly depended on wind speeds retrieved from scatterometers or those provided by other means,which necessitates a high requirement for accuracy and synchronicity of wind-speed measurements.The aim of this study is to develop a novel roughness correction model of ocean emissivity for the salinity retrieval application.The combined active/passive observations of normalized radar cross-sections(NRCSs)and emissivities from ocean surfaces given by the L-band Aquarius/SAC-D mission,and the auxiliary wind directions collocated from the National Centers for Environmental Prediction(NCEP)dataset are used for model development.The model is validated against the observations and the Aquarius standard algorithms of roughness-induced emissivity correction.Comparisons between model computations and measurements indicate that the model has better accuracy in computing wind-induced brightness temperature in the upwind/downwind directions or for the surfaces with smaller NRCSs,which can be better than 0.3 K.However,for crosswind directions and larger NRCSs,the model accuracy is relatively low.A model using HH-polarized NRCSs yields better accuracy than that using VV-polarized ones.For a fair comparison to the Aquarius standard algorithms using wind speeds retrieved from multi-source data,the maximum likelihood estimation is employed to produce results combining our model calculations and those using other sources.Numerical simulations show that combined results basically have higher accuracy than the standard algorithms.展开更多
The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellit...The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.展开更多
The aim of this study was to develop an improved thin sea ice thickness(SIT)retrieval algorithm in the Arctic Ocean from the Soil Moisture Ocean Salinity and Soil Moisture Active Passive L-band radiometer data.This SI...The aim of this study was to develop an improved thin sea ice thickness(SIT)retrieval algorithm in the Arctic Ocean from the Soil Moisture Ocean Salinity and Soil Moisture Active Passive L-band radiometer data.This SIT retrieval algorithm was trained using the simulated SIT from the cumulative freezing degree days model during the freeze-up period over five carefully selected regions in the Beaufort,Chukchi,East Siberian,Laptev and Kara seas and utilized the microwave polarization ratio(PR)at incidence angle of 40°.The improvements of the proposed retrieval algorithm include the correction for the sea ice concentration impact,reliable reference SIT data over different representative regions of the Arctic Ocean and the utilization of microwave polarization ratio that is independent of ice temperature.The relationship between the SIT and PR was found to be almost stable across the five selected regions.The SIT retrievals were then compared to other two existing algorithms(i.e.,UH_SIT from the University of Hamburg and UB_SIT from the University of Bremen)and validated against independent SIT data obtained from moored upward looking sonars(ULS)and airborne electromagnetic(EM)induction sensors.The results suggest that the proposed algorithm could achieve comparable accuracies to UH_SIT and UB_SIT with root mean square error(RMSE)being about 0.20 m when validating using ULS SIT data and outperformed the UH_SIT and UB_SIT with RMSE being about 0.21 m when validatng using EM SIT data.The proposed algorithm can be used for thin sea ice thickness(<1.0 m)estimation in the Arctic Ocean and requires less auxiliary data in the SIT retrieval procedure which makes its implementation more practical.展开更多
In order to meet the requirements of the marine environment for microwave absorption(MA)materials,we put forward the strategy of constructing multi-functional composite materials,which integrate microwave absorption,a...In order to meet the requirements of the marine environment for microwave absorption(MA)materials,we put forward the strategy of constructing multi-functional composite materials,which integrate microwave absorption,anti-corrosion,and antibacterial properties.Herein,graphene oxide(GO)was used as a template to induce the growth of zeolitic imidazolate framework-8(ZIF-8),simultaneously as a two-dimensional(2D)nanocontainers to load corrosion inhibitors to achieve pH-responsive and self-healing properties.Finally,quaternary ammonium salt(dimethyl octadecyl(3-trimethoxylsilyl propyl)ammonium chloride(DMAOP))and sodium ascorbate(VCNa)were introduced to achieve synergistic antibacterial activity and the reduction of GO.The 2D strip-like structure of ZIF-8 was due to the confined growth induced by the electrostatic attraction between ZIF-8 and GO sheets.The as-obtained reduced GO(RGO)/ZIF-8/DMAOP5 exhibited excellent microwave absorption(MA)properties,with a minimum reflection loss(RL)value of-47.08 dB at 12.73 GHz when the thickness was 2.8 mm.Moreover,the effective absorption bandwidth reached 6.84 GHz.After soaking in 3.5%NaCl solution for 35 days,the RGO/ZIF-8/DMAOP5-0.7%coating still achieved an impedance value of 4.585×107Ω·cm^(2) and a protective efficiency of 99.994%,providing superior anti-corrosion properties.In addition,fantastic antibacterial activity was obtained,with the antibacterial rates of RGO/ZIF-8/DMAOP_(10) reaching 99.39%and 100%against Escherichia coli and Staphylococcus aureus.This work could open new avenues towards the development of a new generation of multifunctional MA materials.展开更多
Extensive studies have been carried out on the behavior of core degradation and fission products of common pressurized water reactors(PWRs).However,few of them have investigated the relationship between thermal hydrau...Extensive studies have been carried out on the behavior of core degradation and fission products of common pressurized water reactors(PWRs).However,few of them have investigated the relationship between thermal hydraulic and fission product behavior in advanced passive PWRs.Due to the impact of thermal hydraulic be-haviors in different accident sequences on the release and transportation of fission products,an integrated severe accident analysis(ISAA)code with highly coupled thermal hydraulic and source term calculations is required to simultaneously analyze thermal hydraulic and source term behavior.For advanced passive PWRs,important safety systems that may affect the behavior of the core and fission products should be considered.It is therefore necessary to simulate the thermal hydraulic and fission product behavior of advanced passive PWRs.In this study,the ISAA code is adopted to simulate the occurrence of a hypothetical double ended cold leg LBLOCA of HPR1000 in three scenarios of equipment failure.The results show that the high-temperature fuel rods and cladding ma-terials exhibit delayed failure at the lower position of the active core,whereas earlier failure at higher position during the reflooding.Active and passive equipment affects fuel temperature,the oxidation conditions of the fuel,the interaction of fission products and structural materials,and the state of the fuel,thereby affecting the release of fission products in the fuel.HPR1000 only relies on passive equipment to relieve the core degradation in severe accidents,realize the in-vessel retention of melt,and eliminate the ex-vessel release possibility of fission product.It is hoped that the results can provide references for HPR1000 to formulate the severe accident management guidelines(SAMG).展开更多
The use of space robots(SRs)for on-orbit services(OOSs)has been a hot research topic in recent years.However,the space unstructured environment(i.e.:confined spaces,multiple obstacles,and strong radiation interference...The use of space robots(SRs)for on-orbit services(OOSs)has been a hot research topic in recent years.However,the space unstructured environment(i.e.:confined spaces,multiple obstacles,and strong radiation interference)has greatly restricted the application of SRs.The coupled active-passive multilink cable-driven space robot(CAP-MCDSR)has the characteristics of slim body,flexible movement,and electromechanical separation,which is very suitable for extreme space environments.However,the dynamic and stiffness modeling of CAP-MCDSRs is challenging,due to the complex coupling among the active cables,passive cables,joints,and the end-effector.To deal with these problems,this paper proposes a workspace,stiffness analysis and design optimization method for such type of MCDSRs.Firstly,the multi-coupling kinematics relationships among the joint,cables and the end-effector are established.Based on hybrid series-parallel characteristics,the improved coupled active–passive(CAP)dynamic equation is derived.Then,the maximum workspace,the maximum stiffness,and the minimum cable tension are resolved,among them,the overall stiffness is the superposition of the stiffness produced by the active and the passive cable.Furthermore,the workspace,the stiffness,and the cable tension are analyzed by using the nonlinear optimization method(NOPM).Finally,an 8-DOF CAP-MCDSR experiment system is built to verify the proposed modeling and trajectory tracking methods.The proposed modeling and analysis results are very useful for practical space applications,such as designing a new CAP-MCDSR,or utilizing an existing CAP-MCDSR system.展开更多
The increased speed of global change and associated high severity disturbances,in conjunction with the increasing suite of societal expectations on forests,suggest that the timeliness of interventions to encourage the...The increased speed of global change and associated high severity disturbances,in conjunction with the increasing suite of societal expectations on forests,suggest that the timeliness of interventions to encourage the adaptive capacity of ecosystems and to reduce negative impacts in regards to provision of ecosystem services is increasingly relevant.To address this issue,we expand the concept of lag time as used in ecological discussions into a forest management context.In this context,lag times have earlier starting and later ending points and can be separated into different components.These components include the delay till detection,decision making,and implementation,followed by ecological lag time and the time till ecosystem services are provided at acceptable levels.The first three components are influenced by the availability of information,the lack of which can extend lag times.Also,the lengths of components are not simply additive but they interact.For example,treatment preparation due to a quicker detection can lead to shorter decision and implementation lag times.We highlight the benefits of addressing the various components of lag time in forestry operations.Especially when considering adaptive capacity in times of global change,our analysis suggests that all aspects of the forestry sector are challenged to consider how to optimize lag times.Last,we propose that such issues need to be considered with any management action and are especially relevant in discussions whether the best strategy after disturbances or in the light of global change is to adopt a passive approach and let natural ecosystem processes play out on their own or whether active management is better suited to ensure a more rapid and fitting ecosystem response to facilitate the continued provision of ecosystem services.展开更多
Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for a...Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for application in the field of civil structural health monitoring(CSHM),was summarized and discussed.Based on the different identification mechanisms,the piezoelectric transducer-based technology can be divided into two main approaches as the active or passive sensing and detection methods.This paper summarized the development of these two approaches and discussed their applications in the area of civil structural health monitoring,such as structural and concrete engineering,bridge engineering,pipeline engineering,protection engineering for geological hazards and earthquake disasters,and so on.In addition,the electrical mechanical impedance(EMI)technique,as one of the active identification methods,was also detailly presented.Finally,its great potential for the piezoelectric-based technique was presented based on the detail discussion,especially in the areas of civil structural health monitoring.展开更多
Ultrasonic surface rolling process(USRP)is one of the effective mechanical surface enhancement techniques.During the USRP,unstable static force will easily do harm to the surface quality.In order to achieve a higher s...Ultrasonic surface rolling process(USRP)is one of the effective mechanical surface enhancement techniques.During the USRP,unstable static force will easily do harm to the surface quality.In order to achieve a higher surface quality on the part with a curved surface,an active and passive compliant USRP system has been developed.The compliant USRP tool can produce the natural obedience deformation along the part surface.Force control based on the fuzzy Proportional-integral-derivative(PID)method is then designed to maintain the static force during the USRP.Experiments have been performed on a real aero-engine blade with curved surface.It is proved that the deigned active and passive compliant USRP system can significantly reduce the force variation from 42.2 N to 4.2 N,and achieve a uniform surface quality after processing.展开更多
In the last decade,cognitive radio(CR) has emerged as a major next generation wireless networking technology,which is the most promising candidate solution to solve the spectrum scarcity and improve the spectrum utili...In the last decade,cognitive radio(CR) has emerged as a major next generation wireless networking technology,which is the most promising candidate solution to solve the spectrum scarcity and improve the spectrum utilization.However,there exist enormous challenges for the open and random access environment of CRNs,where the unlicensed secondary users(SUs) can use the channels that are not currently used by the licensed primary users(PUs) via spectrum-sensing technology.Because of this access method,some malicious users may access the cognitive network arbitrarily and launch some special attacks,such as primary user emulation attack,falsifying data or denial of service attack,which will cause serious damage to the cognitive radio network.In addition to the specifi c security threats of cognitive network,CRNs also face up to the conventional security threats,such as eavesdropping,tampering,imitation,forgery,and noncooperation etc..Hence,Cognitive radio networks have much more risks than traditional wireless networks with its special network model.In this paper,we considered the security threats from passive and active attacks.Firstly,the PHY layer security is presented in the view of passive attacks,and it is a compelling idea of using the physical properties of the radio channel to help provide secure wireless communications.Moreover,malicious user detection is introduced in the view of active attacks by means of the signal detection techniques to decrease the interference and the probabilities of false alarm and missed detection.Finally,we discuss the general countermeasures of security threats in three phases.In particular,we discuss the far reaching effect of defensive strategy against attacks in CRNs.展开更多
In this paper,the methods to detect dust based on passive and active measurements from satellites have been summarized.These include the visible and infrared(VIR) method,thermal infrared(TIR) method,microwave pola...In this paper,the methods to detect dust based on passive and active measurements from satellites have been summarized.These include the visible and infrared(VIR) method,thermal infrared(TIR) method,microwave polarized index(MPI) method,active lidar-based method,and combined lidar and infrared measurement(CLIM) method.The VIR method can identify dust during daytime.Using measurements at wavelengths of 8.5,11.0,and 12.0 fan,the TIR method can distinguish dust from other types of aerosols and cloud,and identify the occurrence of dust over bright surfaces and during night.Since neither the VIR nor the TIR method can penetrate ice clouds,they cannot detect dust beneath ice clouds.The MPI method,however,can identify about 85%of the dust beneath ice clouds.Meanwhile,the active lidar-based method,which uses the Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) data and five-dimensional probability distribution functions,can provide very high-resolution vertical profiles of dust aerosols.Nonetheless,as the signals from dense dust and thin clouds are similar in the CALIOP measurements,the lidar-based method may fail to distinguish between them,especially over dust source regions.To address this issue,the CLIM method was developed,which takes the advantages of both TIR measurements(to discriminate between ice cloud and dense dust layers) and lidar measurements(to detect thin dust and water cloud layers).The results obtained by using the new CLIM method show that the ratio of dust misclassification has been significantly reduced.Finally,a concept module for an integrated multi-satellites dust detection system was proposed to overcome some of the weaknesses inherent in the single-sensor dust detection.展开更多
Recently,Reconfigurable Intelligent Surfaces(RISs)have been introduced to provide the necessary flexibility for the design of the Smart Radio Environment(SRE),which can be optimally shaped to facilitate efficient sign...Recently,Reconfigurable Intelligent Surfaces(RISs)have been introduced to provide the necessary flexibility for the design of the Smart Radio Environment(SRE),which can be optimally shaped to facilitate efficient signal transmissions.In line with the concept of smart cities,SRE needs to be carefully designed with respect to the city infrastructure and utilization of resources.In this paper,we provide our vision on RIS integration into future Smart Cities by highlighting the potential technical,environmental,and economic motivations of RIS deployment in harmony with various ecosystems at a city level such as buildings facades.To this end,we are pointing out some scenarios for mitigating the conflict between RIS realization and the existing building facade’s ecosystems such as advertising display and solar cells on building walls.Also,in this fashion,the proposed vision supports a win-win relationship between all stakeholders of different ecosystems.This study presents guidelines for not only enabling seamless economically accepted RIS widespread utilization but,also more technically sounding SRE by supporting enhanced RIS features and more advanced applications that cannot be attained by traditional passive RIS.Moreover,based on the current research directions,we offer promising insights for cost-effective mass pro-duction through motivating two scenarios of“all on silicon”and“all as metasurface”fabrication technology.With this study,we aim to encourage the metasurface researchers,that for a broad deployment of the technical solution,economic,environmental,and other commercial requirements should be planned together,early on in the design phase.展开更多
Maintaining stability as well as optimizing recovery of crown pillar, a pillar separating surface area with the uppermost stope in overhand cut and fill underground mining method, is important. Failures in stope may l...Maintaining stability as well as optimizing recovery of crown pillar, a pillar separating surface area with the uppermost stope in overhand cut and fill underground mining method, is important. Failures in stope may lead to crown pillar failures and cause surface subsidence. Increasing crown pillar thickness will increase crown pillar stability yet reduce mining recovery because part of crown pillar is formed by ore body. Preventing stope failure is the key to maintain stability and optimize recovery of crown pillar. Therefore, it is important to study countermeasure method for stope failure especially in crown pillar area. An attempt has been made to investigate the effectiveness of various countermeasures for stope failure in crown pillar area by means of parametric study. The result shows active type support system is effective for supporting stope in high vertical stress condition while the passive one needs to be installed if the stope is opened in high horizontal stress condition. In general, more supporting capacity from both type support systems is needed if the stope is opened in more severe geological condition. Another countermeasures, sill pillar and surface pile, are introduced for stope instability in crown pillar and non-crown pillar area. Sill pillar is an abandoned slice of unstable stope based on stability analysis. Sill pillar is very effective to stabilize stope both in crown pillar and non-crown pillar area, especially for stope in high horizontal stress condition. Sill pillar application in model with stress ratio 2 can optimize 20 meter thickness of crown pillar into 5 meter. Another proposed countermeasure is surface pile. Surface pile can be installed from the surface to improve stability of crown pillar and stope. The most effective use of surface pile is found in simulation of model with stress ratio 0.75 where surface pile can optimize 15 meter thickness of crown pillar into 5 meter.展开更多
基金The National Key Research and Development Program of China under contract No.2016YFC1401600the Public Science and Technology Research Fund Projects for Ocean Research under contract No.201505003the 2015 Jiangsu Program of Entrepreneurship and Innovation Group under contract No.2191061503801/002
文摘Using sea surface salinity(SSS)observation from the soil moisture active passive(SMAP)mission,we analyzed the spatial distribution and seasonal variation of SSS around Changjiang River(Yangtze River)Estuary for the period of September 2015 to August 2018.First,we found that the SSS from SMAP is more accurate than soil moisture and ocean salinity(SMOS)mission observation when comparing with the in situ observations.Then,the SSS signature of the Changjiang River freshwater was analyzed using SMAP data and the river discharge data from the Datong hydrological station.The results show that the SSS around the Changjiang River Estuary is significantly lower than that of the open ocean,and shows significant seasonal variation.The minimum value of SSS appears in July and maximum SSS in December.The root mean square difference of daily SSS between SMAP observation and in situ observation is around 3 in both summer and winter,which is much lower than the annual range of SSS variation.In summer,the diffusion direction of the Changjiang River freshwater depicted by SSS from SMAP is consistent with the path of freshwater from in situ observation,suggesting that SMAP observation may be used in coastal seas in monitoring the diffusion and advection of freshwater discharge.
基金Supported by National Natural Science Foundation of China(Grant No.51735009)State Key Lab of Mechanical System and Vibration Project of China(Grant No.MSVZD202008)National Aerospace Science Foundation of China(040102).
文摘To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation modes from adjusting,landing,to roving.Compared with our preceding works,the adjusting mode with three rotations(3R)provides a totally novel exploration approach to geometrically matching and securely arriving at complex terrains dangerous to visit currently;the landing mode is redefined by two rotations one translation(2R1T),identical with the tried-and-tested Apollo and Chang'E landers to enhance survivability via reasonable touchdown buffering motion;roving mode also utilizes 2R1T motion for good motion and force properties.The reconfigurable mechanism theory is first brought into synthesizing legged mobile lander integrating active and passive metamorphoses,composed of two types of metamorphic joints and metamorphic execution and transmission mechanisms.To reveal metamorphic principles with multiple finite motions,the finite screw theory is developed to present the procedure from unified mathematical representation,modes and source phase derivations,metamorphic joint and limb design,to final structure assembly.To identify the prototype topology,the 3D optimal selection matrix method is proposed considering three operation modes,five evaluation criteria,and two topological subsystems.Finally,simulation verifies the whole task implementation process to ensure the reasonability of design.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
文摘HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary design based on proven technology of the existing pressurized water reactor NPP;on the other hand,it incorporates advanced design features including a 177-fuel-assembly core loaded with CF3 fuel assemblies,active and passive safety systems,comprehensive severe accident prevention and mitigation measures,enhanced protection against external events,and improved emergency response capability.Extensive verification experiments and tests have been performed for critical innovative improvements on passive systems,the reactor core,and the main equipment.The design of HPR1000fulfills the international utility requirements for advanced light water reactors and the latest nuclear safety requirements,and addresses the safety issues relevant to the Fukushima accident.Along with its outstanding safety and economy,HPR1000 provides an excellent and practicable solution for both domestic and international nuclear power markets.
文摘In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.
文摘Stroke patients always spontaneously do some learning and training of motor functions; however, learning and training are not prompt and right, while patients do not have enough activity amounts. Active and passive motor training apparatus is aimed directly at lower limb training so as to stimulate nerve function through stimulating muscular movement. Based on motor mileage, motor time, various power supplies and velocity of active and passive training apparatus, we can understand the training condition and adjust training program. OBJECTIVE: To observe the effects of grade-III rehabilitation training combining with active and passive training apparatus on lower limb function, muscle strength and activity of daily living (ADL) in stroke patients during recovery period. DESIGN: Contrast observation. SETTING: Department of Rehabilitation, Jilin Academic Institute of Traditional Chinese Medicine. PARTICIPANTS: A total of 80 patients with stroke-induced hemiplegia after stabilizing vital signs for 2 weeks were selected from Department of Rehabilitation, Jilin Academic Institute of Traditional Chinese Medicine from January to June 2007. There were 47 males and 33 females, and their ages ranged from 41 to 75 years. All patients met the diagnostic criteria of the Fourth National Cerebrovascular Disease Academic Meeting in 1995 and were diagnosed as cerebral hemorrhage or cerebral infarction through CT or MRI examinations in clinic. Patients and their parents provided the confirmed consent. Based on therapeutic orders of hospitalization, patients were randomly divided into treatment group and control group with 40 patients in each group. METHODS: Patients in the control group received physical therapy and occupational therapy combining with rehabilitative treatment based on grade-III rehabilitative treatment program, which was set by the National Cerebrovascular Disease Topic Group. In addition, patients in the treatment group were trained with active and passive motor training apparatus based on therapeutic procedures in the control group. The active and passive motor training apparatus was designed as the therapeutic style of nervous system; otherwise, the treatment was performed once a day, 30 minutes once and 6 times per week. Four weeks were regarded as a course. MAIN OUTCOME MEASURES: Before treatment, at 2 weeks after treatment and after the first course, bare-handed muscle strength examination was used to check muscle strength and muscular tension; in addition, simple Fugl-Meyer assessment (FMA) and diagnostic criteria which were set by the Fourth National Cerebrovascular Disease Academic Meeting were used to evaluate motor function of limbs and total ADL. RESULTS: All 80 stroke patients were involved in the final analysis. ① Muscle strength of lower limbs was improved in both treatment group and control group. After the first course, muscle strength in the treatment group was obviously superior to that in the control group ( x^2=6.64, P 〈 0.05). ② After the first course, Fugl-Meyer scores in the treatment group were higher than those in the control group, and there was significant difference (t =2.82, P 〈 0.05). ③ Muscular tension of lower limbs was not changed in both treatment group and control group after treatment (P 〉 0.05). ④ After the first course, ADL in the treatment group was superior to that in the control group (P 〈 0.05). Among patients in the treatment group, 24 cases (60%) had obvious progress, 16 (40%) had progress, and 0 (0%) did not have any changes. On the other hand, among patients in the control group, 13 cases (32.5%) had obvious progress, 26 (65%) had progress, and 1 (2.5%) did not have any changes. CONCLUSION: Rehabilitation training combining with active and passive motor training apparatus can promote the recovery of lower limb disorder, increase muscle strength, control spasm, improve ADL and cause satisfactorily clinical effects in stroke patients during recovery period.
文摘The present article deals with the effective use of film clips in the classroom to encourage active viewing. It argues that viewing material and activities should meet the needs and interest of learners and lead towards a product that can benefit their language-learning capabilities. The selection of right film clips and the designing of appropriate tasks are discussed in detail.
基金The National Key R&D Program of China under contract Nos 2018YFA0605403 and 2016YFB0500204the Hainan Provincial Natural Science Foundation of China under contract No.418QN301the National Natural Science Foundation of China under contract No.41801238。
文摘Roughness-induced emission from ocean surfaces is one of the main issues that affects the retrieval accuracy of sea surface salinity remote sensing.In previous studies,the correction of roughness effect mainly depended on wind speeds retrieved from scatterometers or those provided by other means,which necessitates a high requirement for accuracy and synchronicity of wind-speed measurements.The aim of this study is to develop a novel roughness correction model of ocean emissivity for the salinity retrieval application.The combined active/passive observations of normalized radar cross-sections(NRCSs)and emissivities from ocean surfaces given by the L-band Aquarius/SAC-D mission,and the auxiliary wind directions collocated from the National Centers for Environmental Prediction(NCEP)dataset are used for model development.The model is validated against the observations and the Aquarius standard algorithms of roughness-induced emissivity correction.Comparisons between model computations and measurements indicate that the model has better accuracy in computing wind-induced brightness temperature in the upwind/downwind directions or for the surfaces with smaller NRCSs,which can be better than 0.3 K.However,for crosswind directions and larger NRCSs,the model accuracy is relatively low.A model using HH-polarized NRCSs yields better accuracy than that using VV-polarized ones.For a fair comparison to the Aquarius standard algorithms using wind speeds retrieved from multi-source data,the maximum likelihood estimation is employed to produce results combining our model calculations and those using other sources.Numerical simulations show that combined results basically have higher accuracy than the standard algorithms.
文摘The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.
基金The National Natural Science Foundation of China under contract Nos 41830536 and 41925027the Guangdong Natural Science Foundation under contract No.2023A1515011235the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311021008.
文摘The aim of this study was to develop an improved thin sea ice thickness(SIT)retrieval algorithm in the Arctic Ocean from the Soil Moisture Ocean Salinity and Soil Moisture Active Passive L-band radiometer data.This SIT retrieval algorithm was trained using the simulated SIT from the cumulative freezing degree days model during the freeze-up period over five carefully selected regions in the Beaufort,Chukchi,East Siberian,Laptev and Kara seas and utilized the microwave polarization ratio(PR)at incidence angle of 40°.The improvements of the proposed retrieval algorithm include the correction for the sea ice concentration impact,reliable reference SIT data over different representative regions of the Arctic Ocean and the utilization of microwave polarization ratio that is independent of ice temperature.The relationship between the SIT and PR was found to be almost stable across the five selected regions.The SIT retrievals were then compared to other two existing algorithms(i.e.,UH_SIT from the University of Hamburg and UB_SIT from the University of Bremen)and validated against independent SIT data obtained from moored upward looking sonars(ULS)and airborne electromagnetic(EM)induction sensors.The results suggest that the proposed algorithm could achieve comparable accuracies to UH_SIT and UB_SIT with root mean square error(RMSE)being about 0.20 m when validating using ULS SIT data and outperformed the UH_SIT and UB_SIT with RMSE being about 0.21 m when validatng using EM SIT data.The proposed algorithm can be used for thin sea ice thickness(<1.0 m)estimation in the Arctic Ocean and requires less auxiliary data in the SIT retrieval procedure which makes its implementation more practical.
基金supported by the National Natural Science Foundation of China(Nos.51903213 and 5217130190)the Science and Technology Planning Project of Sichuan Province(Nos.2023NSFSC1952 and 2022ZYD0028)+1 种基金the Central Government Guides Local Science and Technology Development Special Funds to freely explore basic research projects(No.2021Szvup124)the Fundamental Research Funds for the Central Universities(No.2682021GF004).
文摘In order to meet the requirements of the marine environment for microwave absorption(MA)materials,we put forward the strategy of constructing multi-functional composite materials,which integrate microwave absorption,anti-corrosion,and antibacterial properties.Herein,graphene oxide(GO)was used as a template to induce the growth of zeolitic imidazolate framework-8(ZIF-8),simultaneously as a two-dimensional(2D)nanocontainers to load corrosion inhibitors to achieve pH-responsive and self-healing properties.Finally,quaternary ammonium salt(dimethyl octadecyl(3-trimethoxylsilyl propyl)ammonium chloride(DMAOP))and sodium ascorbate(VCNa)were introduced to achieve synergistic antibacterial activity and the reduction of GO.The 2D strip-like structure of ZIF-8 was due to the confined growth induced by the electrostatic attraction between ZIF-8 and GO sheets.The as-obtained reduced GO(RGO)/ZIF-8/DMAOP5 exhibited excellent microwave absorption(MA)properties,with a minimum reflection loss(RL)value of-47.08 dB at 12.73 GHz when the thickness was 2.8 mm.Moreover,the effective absorption bandwidth reached 6.84 GHz.After soaking in 3.5%NaCl solution for 35 days,the RGO/ZIF-8/DMAOP5-0.7%coating still achieved an impedance value of 4.585×107Ω·cm^(2) and a protective efficiency of 99.994%,providing superior anti-corrosion properties.In addition,fantastic antibacterial activity was obtained,with the antibacterial rates of RGO/ZIF-8/DMAOP_(10) reaching 99.39%and 100%against Escherichia coli and Staphylococcus aureus.This work could open new avenues towards the development of a new generation of multifunctional MA materials.
基金the National Key Research and Development Program of China(Grant No.:2019YFE0191600).
文摘Extensive studies have been carried out on the behavior of core degradation and fission products of common pressurized water reactors(PWRs).However,few of them have investigated the relationship between thermal hydraulic and fission product behavior in advanced passive PWRs.Due to the impact of thermal hydraulic be-haviors in different accident sequences on the release and transportation of fission products,an integrated severe accident analysis(ISAA)code with highly coupled thermal hydraulic and source term calculations is required to simultaneously analyze thermal hydraulic and source term behavior.For advanced passive PWRs,important safety systems that may affect the behavior of the core and fission products should be considered.It is therefore necessary to simulate the thermal hydraulic and fission product behavior of advanced passive PWRs.In this study,the ISAA code is adopted to simulate the occurrence of a hypothetical double ended cold leg LBLOCA of HPR1000 in three scenarios of equipment failure.The results show that the high-temperature fuel rods and cladding ma-terials exhibit delayed failure at the lower position of the active core,whereas earlier failure at higher position during the reflooding.Active and passive equipment affects fuel temperature,the oxidation conditions of the fuel,the interaction of fission products and structural materials,and the state of the fuel,thereby affecting the release of fission products in the fuel.HPR1000 only relies on passive equipment to relieve the core degradation in severe accidents,realize the in-vessel retention of melt,and eliminate the ex-vessel release possibility of fission product.It is hoped that the results can provide references for HPR1000 to formulate the severe accident management guidelines(SAMG).
基金supported by the National Natural Science Foundation of China(No.62103454)the Key-Area Research and Development Program of Guangdong Province(No.2020B1111010001)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110680)the Shenzhen Municipal Basic Research Project for Natural Science Foundation(No.JCYJ20190806143408992)the Fundamental Research Funds for the Central Universities(No.2021qntd08)Sun Yat-sen University。
文摘The use of space robots(SRs)for on-orbit services(OOSs)has been a hot research topic in recent years.However,the space unstructured environment(i.e.:confined spaces,multiple obstacles,and strong radiation interference)has greatly restricted the application of SRs.The coupled active-passive multilink cable-driven space robot(CAP-MCDSR)has the characteristics of slim body,flexible movement,and electromechanical separation,which is very suitable for extreme space environments.However,the dynamic and stiffness modeling of CAP-MCDSRs is challenging,due to the complex coupling among the active cables,passive cables,joints,and the end-effector.To deal with these problems,this paper proposes a workspace,stiffness analysis and design optimization method for such type of MCDSRs.Firstly,the multi-coupling kinematics relationships among the joint,cables and the end-effector are established.Based on hybrid series-parallel characteristics,the improved coupled active–passive(CAP)dynamic equation is derived.Then,the maximum workspace,the maximum stiffness,and the minimum cable tension are resolved,among them,the overall stiffness is the superposition of the stiffness produced by the active and the passive cable.Furthermore,the workspace,the stiffness,and the cable tension are analyzed by using the nonlinear optimization method(NOPM).Finally,an 8-DOF CAP-MCDSR experiment system is built to verify the proposed modeling and trajectory tracking methods.The proposed modeling and analysis results are very useful for practical space applications,such as designing a new CAP-MCDSR,or utilizing an existing CAP-MCDSR system.
基金funding from the Deutsche Forschungsgemeinschaft (DFG),project ID 422010107,reference number UP 14/1 through the Freiburg Research Collaboration Programme
文摘The increased speed of global change and associated high severity disturbances,in conjunction with the increasing suite of societal expectations on forests,suggest that the timeliness of interventions to encourage the adaptive capacity of ecosystems and to reduce negative impacts in regards to provision of ecosystem services is increasingly relevant.To address this issue,we expand the concept of lag time as used in ecological discussions into a forest management context.In this context,lag times have earlier starting and later ending points and can be separated into different components.These components include the delay till detection,decision making,and implementation,followed by ecological lag time and the time till ecosystem services are provided at acceptable levels.The first three components are influenced by the availability of information,the lack of which can extend lag times.Also,the lengths of components are not simply additive but they interact.For example,treatment preparation due to a quicker detection can lead to shorter decision and implementation lag times.We highlight the benefits of addressing the various components of lag time in forestry operations.Especially when considering adaptive capacity in times of global change,our analysis suggests that all aspects of the forestry sector are challenged to consider how to optimize lag times.Last,we propose that such issues need to be considered with any management action and are especially relevant in discussions whether the best strategy after disturbances or in the light of global change is to adopt a passive approach and let natural ecosystem processes play out on their own or whether active management is better suited to ensure a more rapid and fitting ecosystem response to facilitate the continued provision of ecosystem services.
基金the National Natural Science Funding of China(No.51878628,51708520).
文摘Piezoelectric material,as one of the great potential materials,had attracted lots of attention all over the world due to its distinguish advantages.In this paper,the development of piezoelectric-based technology for application in the field of civil structural health monitoring(CSHM),was summarized and discussed.Based on the different identification mechanisms,the piezoelectric transducer-based technology can be divided into two main approaches as the active or passive sensing and detection methods.This paper summarized the development of these two approaches and discussed their applications in the area of civil structural health monitoring,such as structural and concrete engineering,bridge engineering,pipeline engineering,protection engineering for geological hazards and earthquake disasters,and so on.In addition,the electrical mechanical impedance(EMI)technique,as one of the active identification methods,was also detailly presented.Finally,its great potential for the piezoelectric-based technique was presented based on the detail discussion,especially in the areas of civil structural health monitoring.
基金sponsored by the National Natural Science Foundation of China(No.51725503,No.51975214)Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-02-E00068)+2 种基金support by Shanghai Technology Innovation Program of SHEITC(CXY-2015-001)Fok Ying Tung Education FoundationYoung Program of Yangtze River Scholars。
文摘Ultrasonic surface rolling process(USRP)is one of the effective mechanical surface enhancement techniques.During the USRP,unstable static force will easily do harm to the surface quality.In order to achieve a higher surface quality on the part with a curved surface,an active and passive compliant USRP system has been developed.The compliant USRP tool can produce the natural obedience deformation along the part surface.Force control based on the fuzzy Proportional-integral-derivative(PID)method is then designed to maintain the static force during the USRP.Experiments have been performed on a real aero-engine blade with curved surface.It is proved that the deigned active and passive compliant USRP system can significantly reduce the force variation from 42.2 N to 4.2 N,and achieve a uniform surface quality after processing.
基金supported in part by the National Natural Science Foundation of China(61227801,61121001,61201152,and 61421061)the Program for New Century Excellent Talents in University(NCET-01-0259)the Fundamental Research Funds for the Central Universities(2013RC0106)
文摘In the last decade,cognitive radio(CR) has emerged as a major next generation wireless networking technology,which is the most promising candidate solution to solve the spectrum scarcity and improve the spectrum utilization.However,there exist enormous challenges for the open and random access environment of CRNs,where the unlicensed secondary users(SUs) can use the channels that are not currently used by the licensed primary users(PUs) via spectrum-sensing technology.Because of this access method,some malicious users may access the cognitive network arbitrarily and launch some special attacks,such as primary user emulation attack,falsifying data or denial of service attack,which will cause serious damage to the cognitive radio network.In addition to the specifi c security threats of cognitive network,CRNs also face up to the conventional security threats,such as eavesdropping,tampering,imitation,forgery,and noncooperation etc..Hence,Cognitive radio networks have much more risks than traditional wireless networks with its special network model.In this paper,we considered the security threats from passive and active attacks.Firstly,the PHY layer security is presented in the view of passive attacks,and it is a compelling idea of using the physical properties of the radio channel to help provide secure wireless communications.Moreover,malicious user detection is introduced in the view of active attacks by means of the signal detection techniques to decrease the interference and the probabilities of false alarm and missed detection.Finally,we discuss the general countermeasures of security threats in three phases.In particular,we discuss the far reaching effect of defensive strategy against attacks in CRNs.
基金Supported by the National Basic Research and Development (973) Program of China(2012CB955301)National Natural Science Foundation of China(41305026,41075021,41305027)Fundamental Research Fund for the Central Universities of China(LZUJBKY-2013-104)
文摘In this paper,the methods to detect dust based on passive and active measurements from satellites have been summarized.These include the visible and infrared(VIR) method,thermal infrared(TIR) method,microwave polarized index(MPI) method,active lidar-based method,and combined lidar and infrared measurement(CLIM) method.The VIR method can identify dust during daytime.Using measurements at wavelengths of 8.5,11.0,and 12.0 fan,the TIR method can distinguish dust from other types of aerosols and cloud,and identify the occurrence of dust over bright surfaces and during night.Since neither the VIR nor the TIR method can penetrate ice clouds,they cannot detect dust beneath ice clouds.The MPI method,however,can identify about 85%of the dust beneath ice clouds.Meanwhile,the active lidar-based method,which uses the Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) data and five-dimensional probability distribution functions,can provide very high-resolution vertical profiles of dust aerosols.Nonetheless,as the signals from dense dust and thin clouds are similar in the CALIOP measurements,the lidar-based method may fail to distinguish between them,especially over dust source regions.To address this issue,the CLIM method was developed,which takes the advantages of both TIR measurements(to discriminate between ice cloud and dense dust layers) and lidar measurements(to detect thin dust and water cloud layers).The results obtained by using the new CLIM method show that the ratio of dust misclassification has been significantly reduced.Finally,a concept module for an integrated multi-satellites dust detection system was proposed to overcome some of the weaknesses inherent in the single-sensor dust detection.
文摘Recently,Reconfigurable Intelligent Surfaces(RISs)have been introduced to provide the necessary flexibility for the design of the Smart Radio Environment(SRE),which can be optimally shaped to facilitate efficient signal transmissions.In line with the concept of smart cities,SRE needs to be carefully designed with respect to the city infrastructure and utilization of resources.In this paper,we provide our vision on RIS integration into future Smart Cities by highlighting the potential technical,environmental,and economic motivations of RIS deployment in harmony with various ecosystems at a city level such as buildings facades.To this end,we are pointing out some scenarios for mitigating the conflict between RIS realization and the existing building facade’s ecosystems such as advertising display and solar cells on building walls.Also,in this fashion,the proposed vision supports a win-win relationship between all stakeholders of different ecosystems.This study presents guidelines for not only enabling seamless economically accepted RIS widespread utilization but,also more technically sounding SRE by supporting enhanced RIS features and more advanced applications that cannot be attained by traditional passive RIS.Moreover,based on the current research directions,we offer promising insights for cost-effective mass pro-duction through motivating two scenarios of“all on silicon”and“all as metasurface”fabrication technology.With this study,we aim to encourage the metasurface researchers,that for a broad deployment of the technical solution,economic,environmental,and other commercial requirements should be planned together,early on in the design phase.
文摘Maintaining stability as well as optimizing recovery of crown pillar, a pillar separating surface area with the uppermost stope in overhand cut and fill underground mining method, is important. Failures in stope may lead to crown pillar failures and cause surface subsidence. Increasing crown pillar thickness will increase crown pillar stability yet reduce mining recovery because part of crown pillar is formed by ore body. Preventing stope failure is the key to maintain stability and optimize recovery of crown pillar. Therefore, it is important to study countermeasure method for stope failure especially in crown pillar area. An attempt has been made to investigate the effectiveness of various countermeasures for stope failure in crown pillar area by means of parametric study. The result shows active type support system is effective for supporting stope in high vertical stress condition while the passive one needs to be installed if the stope is opened in high horizontal stress condition. In general, more supporting capacity from both type support systems is needed if the stope is opened in more severe geological condition. Another countermeasures, sill pillar and surface pile, are introduced for stope instability in crown pillar and non-crown pillar area. Sill pillar is an abandoned slice of unstable stope based on stability analysis. Sill pillar is very effective to stabilize stope both in crown pillar and non-crown pillar area, especially for stope in high horizontal stress condition. Sill pillar application in model with stress ratio 2 can optimize 20 meter thickness of crown pillar into 5 meter. Another proposed countermeasure is surface pile. Surface pile can be installed from the surface to improve stability of crown pillar and stope. The most effective use of surface pile is found in simulation of model with stress ratio 0.75 where surface pile can optimize 15 meter thickness of crown pillar into 5 meter.