With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rej...With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.展开更多
The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecologic...The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.展开更多
Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powe...Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.展开更多
This work produced a Mg Al-layered double hydroxide by hydrothermal treatment of a plasma electrolytic oxidation(PEO) coating on magnesium alloy AZ31 in an phosphate electrolyte, followed by an ion-exchange reaction i...This work produced a Mg Al-layered double hydroxide by hydrothermal treatment of a plasma electrolytic oxidation(PEO) coating on magnesium alloy AZ31 in an phosphate electrolyte, followed by an ion-exchange reaction in 0.1 M phosphate solution. The coated specimens were scratched. Characterization, including utilization of the localized technique SIET, measured the pH and p Mg distributions and optical morphologies around the artificial defects during immersion in 0.05 M NaCl solution. In contrast with phosphate loaded PEO/LDHs, a stronger alkalinization area(with pH 11.4~12.3) appeared in the passive PEO specimens. Due to formation of insoluble Mg(OH)_(2) products, the p Mg map showed depletion of Mg^(2+) in this high p H area. Combined with optical morphologies and SEM images, the better self-healing ability toward defects for phosphate loaded PEO/LDHs was confirmed.展开更多
A triggered surge protective device is designed and its discharge characteristics axe studied. The experimental results show that the triggered surge protective device has excellent surge protective characteristics. W...A triggered surge protective device is designed and its discharge characteristics axe studied. The experimental results show that the triggered surge protective device has excellent surge protective characteristics. When the gap distance is 5 mm, p. d is 90 Pa.mm and without an active energy trigger circuit, the DC breakdown voltage of the triggered surge protective device is 2.32 kV and the pulse breakdown voltage is 5.75 kV. Therefore, the pulse voltage ratio, which is defined as the specific value of pulse breakdown voltage and DC breakdown voltage, is 2.48. With a semiconductor ZnO flashover trigger device and an active energy coupling trigger circuit, the pulse breakdown voltage can be reduced to 3.32 kV, the pulse voltage ratio is 1.43 and the response time is less than 100 ns. These results are helpful in laying a theoretical foundation for further studies on triggered surge protective devices.展开更多
Zinc aluminium(Zn-Al)and lithium aluminium(Li-Al)–layered double hydroxides(LDH)coatings with incorporated inhibitors(Li-,Mo-and W-based)were successfully synthesized on AZ31 Mg alloy.Zn-Al LDH W and Li-Al LDH Li sho...Zinc aluminium(Zn-Al)and lithium aluminium(Li-Al)–layered double hydroxides(LDH)coatings with incorporated inhibitors(Li-,Mo-and W-based)were successfully synthesized on AZ31 Mg alloy.Zn-Al LDH W and Li-Al LDH Li showed the highest corrosion resistance and were selected for further evaluation.SEM cross-section examination revealed a bi-layer structure composed of an outer part with loose flakes and a denser inner layer.XRD,FTIR,and XPS analysis confirmed the incorporation of the inhibitors.Post-treatments with corrosion inhibitors containing solutions resulted in the selective dissolution of the most external layer of the LDH coating,reducing the surface roughness,hydrophilicity and paint adhesion of the layers.Active corrosion properties were confirmed by SVET evaluation for the Zn-Al LDH W coating.The proposed active corrosion mechanism involves the ion-exchange of aggressive Cl-ions,deposition of hydroxides and competitive adsorption of W-rich corrosion inhibitors.展开更多
The pharmacodynamic active parts of protecting liver of Peristrope japonica (thunb.)Bremek were identified. Rat acute liver injury model was induced by D-galactosamine (D-GlaN). The active parts were identified on the...The pharmacodynamic active parts of protecting liver of Peristrope japonica (thunb.)Bremek were identified. Rat acute liver injury model was induced by D-galactosamine (D-GlaN). The active parts were identified on the whole extraction and 4 fractions. The results showed that the pharmacodynamic active parts of Peristrope japonica were the n-BuOH fraction.展开更多
Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces w...Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.展开更多
In recent decades,the potential health hazards of microwave exposure have been attracting increasing attention.Our previous studies have demonstrated that microwave exposure impaired learning and memory in experimenta...In recent decades,the potential health hazards of microwave exposure have been attracting increasing attention.Our previous studies have demonstrated that microwave exposure impaired learning and memory in experimental animal models[1,2].展开更多
This paper examines systematic differences in earnings management through real activity manipulation and accrual manipulation across 7 Asia countries. The study proposes arguments that in economies with high investor ...This paper examines systematic differences in earnings management through real activity manipulation and accrual manipulation across 7 Asia countries. The study proposes arguments that in economies with high investor protection, managers prefer to manage earnings through real activity manipulation rather than through accrual manipulation because accrual manipulation is more likely to draw auditors or regulators scrutiny than real decisions about pricing and production. The study findings are consistent with prediction. Despite being in economies with high investor protection, managers still have bigger discretion in managing earnings through real activities rather than accrual manipulation.展开更多
The yield and purity of synthetic peptides were greatly related to the amino acid protection and activation during the synthesis process. Therefore, the amino acid protection and activation are the most important step...The yield and purity of synthetic peptides were greatly related to the amino acid protection and activation during the synthesis process. Therefore, the amino acid protection and activation are the most important steps in peptide synthesis. By using tetrahydrofuran as the solvent, 9-fluorenylmethoxycarbonyl as protection group, 2-(7-azobenzotri- azol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) as condensation reagent an amino protected histidine ester was given. In this article a novel synthesis method for N-(9- fluorenylmethoxycarbonyl)-histidine active ester was established. The reaction conditions for preparing this active ester were optimized. The experimental results indicated that solvents and active reagents had remarkable effects on the yield of active ester. The best conditions for preparing the active ester was a ratio of n (Fmoc-His-OH): n (HATU) = 1:1.2 with THF used as the solvent at room temperature. The yield of the final product was about 80% with a purity of over 85%. This simple method would provide fundamentals for the synthesis of other protected amino acid active esters.展开更多
Protection of various materials against hydration is of continuing interest to chemists and material scientists. We report on stabilization of porous surface of activated -alumina spheres (AAS) against hydration by an...Protection of various materials against hydration is of continuing interest to chemists and material scientists. We report on stabilization of porous surface of activated -alumina spheres (AAS) against hydration by an adhesive coat of nano-magnetite particles. The nano-Fe3O4-coated AAS were prepared in the ultrasound-agitated suspension of magnetite nanoparticles in heptane and were characterized by using X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area analysis and X-ray photoelectron spectroscopy (XPS). It is deduced that nanoparticle-alumina bonding interaction in non-polar organic solvent is enhanced by van der Waals attractive forces and that sonication induces changes in alumina morphology only in regions of contact between alumina and magnetite nanoparticles. The coated AAS submerged in still water avoid hydration and remain permeable by small gaseous (N2) molecules, while those soaked in moving water lose part of their coat and undergo hydration. The pristine and the coated AAS were briefly compared for their ability to degrade model antibiotics by using LC-MS analysis. It is confirmed that the degradation of trimethoprim is more efficient on the coated AAS. Our results are challenging for further research of Coulombic interactions between nano-particles and appropriate solid supports.展开更多
基金the 2021 Key Project of Natural Science and Technology of Yangzhou Polytechnic Institute,Active Disturbance Rejection and Fault-Tolerant Control of Multi-Rotor Plant ProtectionUAV Based on QBall-X4(Grant Number 2021xjzk002).
文摘With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.
基金supported by the National Natural Science Foundation of China (41602205, 42293261)the China Geological Survey Program (DD20189506, DD20211301)+2 种基金the Special Investigation Project on Science and Technology Basic Resources of the Ministry of Science and Technology (2021FY101003)the Central Guidance for Local Scientific and Technological Development Fund of 2023the Project of Hebei University of Environmental Engineering (GCY202301)
文摘The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.
基金This work was financially supported by the Opening Project of National Local Joint Laboratory for Advanced Textile Processing and Clean Production(FX2022006)Guiding Project of Natural Science Foundation of Hubei province(2022CFC072)+2 种基金Guiding Project of Scientific Research Plan of Education Department of Hubei Province(B2022081)Shenghong Key Scientific Research Project of Emergency Support and Public Safety Fiber Materials and Products(2022-rw0101)Science and Technology Guidance Program of China National Textile and Apparel Council(2022002).
文摘Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.
基金the International Cooperation in Science and Technology Innovation between Governments,National Key Research and Development Program of China(No.2018YFE0116200)the National Natural Science Foundation of China(51971040)the Fundamental Research Funds for the Central Universities(2020CDJQY-A007)。
文摘This work produced a Mg Al-layered double hydroxide by hydrothermal treatment of a plasma electrolytic oxidation(PEO) coating on magnesium alloy AZ31 in an phosphate electrolyte, followed by an ion-exchange reaction in 0.1 M phosphate solution. The coated specimens were scratched. Characterization, including utilization of the localized technique SIET, measured the pH and p Mg distributions and optical morphologies around the artificial defects during immersion in 0.05 M NaCl solution. In contrast with phosphate loaded PEO/LDHs, a stronger alkalinization area(with pH 11.4~12.3) appeared in the passive PEO specimens. Due to formation of insoluble Mg(OH)_(2) products, the p Mg map showed depletion of Mg^(2+) in this high p H area. Combined with optical morphologies and SEM images, the better self-healing ability toward defects for phosphate loaded PEO/LDHs was confirmed.
基金supported by National Natural Science Foundation of China(No.51177131)the New Century Talent Foundation of Ministry of Education of China(NCET-08-0438)
文摘A triggered surge protective device is designed and its discharge characteristics axe studied. The experimental results show that the triggered surge protective device has excellent surge protective characteristics. When the gap distance is 5 mm, p. d is 90 Pa.mm and without an active energy trigger circuit, the DC breakdown voltage of the triggered surge protective device is 2.32 kV and the pulse breakdown voltage is 5.75 kV. Therefore, the pulse voltage ratio, which is defined as the specific value of pulse breakdown voltage and DC breakdown voltage, is 2.48. With a semiconductor ZnO flashover trigger device and an active energy coupling trigger circuit, the pulse breakdown voltage can be reduced to 3.32 kV, the pulse voltage ratio is 1.43 and the response time is less than 100 ns. These results are helpful in laying a theoretical foundation for further studies on triggered surge protective devices.
基金the support of the RTI2018-096391-B-C33 FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de InvestigaciónS2018/NMT-4411 Regional Government of Madrid+2 种基金EU Structural and Social Funds and PID2021-124341OBC22(MCIU/AEI/FEDER,UE)the support of RYC-201721843,Ministerio de Ciencia e Innovaciónsupported by the Royal Academy of Engineering through the RAEng Research Fellowship and by EPSRC(EP/V026097/1)。
文摘Zinc aluminium(Zn-Al)and lithium aluminium(Li-Al)–layered double hydroxides(LDH)coatings with incorporated inhibitors(Li-,Mo-and W-based)were successfully synthesized on AZ31 Mg alloy.Zn-Al LDH W and Li-Al LDH Li showed the highest corrosion resistance and were selected for further evaluation.SEM cross-section examination revealed a bi-layer structure composed of an outer part with loose flakes and a denser inner layer.XRD,FTIR,and XPS analysis confirmed the incorporation of the inhibitors.Post-treatments with corrosion inhibitors containing solutions resulted in the selective dissolution of the most external layer of the LDH coating,reducing the surface roughness,hydrophilicity and paint adhesion of the layers.Active corrosion properties were confirmed by SVET evaluation for the Zn-Al LDH W coating.The proposed active corrosion mechanism involves the ion-exchange of aggressive Cl-ions,deposition of hydroxides and competitive adsorption of W-rich corrosion inhibitors.
文摘The pharmacodynamic active parts of protecting liver of Peristrope japonica (thunb.)Bremek were identified. Rat acute liver injury model was induced by D-galactosamine (D-GlaN). The active parts were identified on the whole extraction and 4 fractions. The results showed that the pharmacodynamic active parts of Peristrope japonica were the n-BuOH fraction.
基金Project DPC-ReLUIS 2005-2008, RL n.7 "Technologies for the isolation and control of structures and infrastructures"
文摘Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.
基金supported by National Science Foundation of China[No.81172620]。
文摘In recent decades,the potential health hazards of microwave exposure have been attracting increasing attention.Our previous studies have demonstrated that microwave exposure impaired learning and memory in experimental animal models[1,2].
文摘This paper examines systematic differences in earnings management through real activity manipulation and accrual manipulation across 7 Asia countries. The study proposes arguments that in economies with high investor protection, managers prefer to manage earnings through real activity manipulation rather than through accrual manipulation because accrual manipulation is more likely to draw auditors or regulators scrutiny than real decisions about pricing and production. The study findings are consistent with prediction. Despite being in economies with high investor protection, managers still have bigger discretion in managing earnings through real activities rather than accrual manipulation.
文摘The yield and purity of synthetic peptides were greatly related to the amino acid protection and activation during the synthesis process. Therefore, the amino acid protection and activation are the most important steps in peptide synthesis. By using tetrahydrofuran as the solvent, 9-fluorenylmethoxycarbonyl as protection group, 2-(7-azobenzotri- azol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU) as condensation reagent an amino protected histidine ester was given. In this article a novel synthesis method for N-(9- fluorenylmethoxycarbonyl)-histidine active ester was established. The reaction conditions for preparing this active ester were optimized. The experimental results indicated that solvents and active reagents had remarkable effects on the yield of active ester. The best conditions for preparing the active ester was a ratio of n (Fmoc-His-OH): n (HATU) = 1:1.2 with THF used as the solvent at room temperature. The yield of the final product was about 80% with a purity of over 85%. This simple method would provide fundamentals for the synthesis of other protected amino acid active esters.
文摘Protection of various materials against hydration is of continuing interest to chemists and material scientists. We report on stabilization of porous surface of activated -alumina spheres (AAS) against hydration by an adhesive coat of nano-magnetite particles. The nano-Fe3O4-coated AAS were prepared in the ultrasound-agitated suspension of magnetite nanoparticles in heptane and were characterized by using X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area analysis and X-ray photoelectron spectroscopy (XPS). It is deduced that nanoparticle-alumina bonding interaction in non-polar organic solvent is enhanced by van der Waals attractive forces and that sonication induces changes in alumina morphology only in regions of contact between alumina and magnetite nanoparticles. The coated AAS submerged in still water avoid hydration and remain permeable by small gaseous (N2) molecules, while those soaked in moving water lose part of their coat and undergo hydration. The pristine and the coated AAS were briefly compared for their ability to degrade model antibiotics by using LC-MS analysis. It is confirmed that the degradation of trimethoprim is more efficient on the coated AAS. Our results are challenging for further research of Coulombic interactions between nano-particles and appropriate solid supports.