In this paper,a novel pulse density modulation(PDM)with semi-bridgeless active rectifier(S-BAR)in inductive power transfer(IPT)system for rail vehicle is proposed.It is to reduce switching losses of the active rectifi...In this paper,a novel pulse density modulation(PDM)with semi-bridgeless active rectifier(S-BAR)in inductive power transfer(IPT)system for rail vehicle is proposed.It is to reduce switching losses of the active rectifier in pickups.In the control method,the insulated-gate bipolar transistors(IGBTs)in the S-BAR are controlled by synchronous PDM signals,so that zero-voltage switching(ZVS)and zero-current switching(ZCS)can be achieved in the whole output power range.The output power is regulated by changing the pulse density(PD)of the S-BAR since the it is almost linear proportional with the PD in high quality factor of pickup side.The communication device between the primary side and pickup side is not necessary anymore.The detailed theoretical analyses of the PDM method are provided,and its advantages are shown in a 7.5kW IPT prototype for rail vehicle.The experimental results are presented to verify the analysis and demonstrate the performance.The overall efficiency of the system by PDM control is 74.2%which is improved by 4%compared with phase shift(PS)control at light load.展开更多
Objectives To evaluate the association between a KCNQ 1 mutation, R259H, and short QT syndrome (SQTS) and to explore the elec- trophysiological mechanisms underlying their association. Methods We performed genetic s...Objectives To evaluate the association between a KCNQ 1 mutation, R259H, and short QT syndrome (SQTS) and to explore the elec- trophysiological mechanisms underlying their association. Methods We performed genetic screening of SQTS genes in 25 probands and their family members (63 patients). We used direct sequencing to screen the exons and intron-exon boundaries of candidate genes that en- code ion channels which contribute to the repolarization of the ventricular action potential, including KCNQI, KCNH2, KCNE1, KCNE2, KCNJ2, CACNAlc, CACNB2b and CACNA2D1. In one of the 25 SQTS probands screened, we discovered a KCNQ1 mutation, R259H. We cloned R259H and transiently expressed it in HEK-293 cells; then, currents were recorded using whole cell patch clamp techniques. Results R259H-KCNQ 1 showed significantly increased current density, which was approximately 3-fold larger than that of wild type (WT) after a depolarizing pulse at 1 s. The steady state voltage dependence of the activation and inactivation did not show significant differences between the WT and R259H mutation (P 〉 0.05), whereas the time constant of deactivation was markedly prolonged in the mutant compared with the WT in terms of the test potentials, which indicated that the deactivation of R259H was markedly slower than that of the WT. These results suggested that the R259H mutation can effectively increase the slowly activated delayed rectifier potassium current (Irs) in phase 3 of the cardiac action potential, which may be an infrequent cause of QT interval shortening. Conclusions R259H is a gain-of-function muta- tion of the KCNQ1 channel that is responsible for SQTS2. This is the first time that the R259H mutation was detected in Chinese people.展开更多
Objective Abnormal QT prolongation associated with arrhythmias is considered the major cardiac electrical disorder and a significant predictor of mortality in diabetic patients. The precise ionic mechanisms for diabet...Objective Abnormal QT prolongation associated with arrhythmias is considered the major cardiac electrical disorder and a significant predictor of mortality in diabetic patients. The precise ionic mechanisms for diabetic QT prolongation remained unclear. The present study was designed to analyze the changes of ventricular repolarization and the underlying ionic mechanisms in diabetic rabbit hearts. Methods Diabetes was induced by a single injection ofalloxan (145mg/kg, Lv. ). After the development of diabetes (10 weeks), ECG was measured. Whole-cell patch-clamp technique was applied to record the action potential duration (APD50, APD90), slowly activating outward rectifying potassium current (IKs), L-type calcium current (ICa-L) and inward rectifying potassium current (IK1). Results The action potential duration (APD50 and APD90) of ventricular myocytes was obviously prolonged from 271.5+32.3 ms and 347.8+36.3 ms to 556.6~72.5 ms and 647.9~72.2 ms respectively (P〈 0.05). Meanwhile the normalized peak current densities of IKs in ventricular myocytes investigated by whole-cell patch clamp was smaller in diabetic rabbits than that in control group at test potential of+50mV (1.27~0.20 pA/pF vs 3.08~0.67 pA/pF, P〈0.05). And the density of the ICa-L was increased apparently at the test potential of 10 mV (-2.67~0.41 pA/pF vs -5.404-1.08 pA/pF, P〈0.05). Conclusion Ventricular repolarization was prolonged in diabetic rabbits, it may be partly due to the increased L-type calcium current and reduced slow delayed rectifier K+ current (IKs) (J Geriatr Cardio12010; 7:25-29).展开更多
An ultra low voltage rectifier with high power conversion efficiency (PCE) for PE energy harvesting ap- plications is presented in this paper. This is achieved by utilizing the DTMOS which the body terminal is conne...An ultra low voltage rectifier with high power conversion efficiency (PCE) for PE energy harvesting ap- plications is presented in this paper. This is achieved by utilizing the DTMOS which the body terminal is connected to the gate terminal in a diode connected transistor. This implementation facilitates the rectifier with dynamic con- trol over the threshold voltage. Moreover, we use input powered to take the place of output powered to reduce the power loss and thereby increasing the power conversion efficiency. Based on standard SMIC 0.18 μm CMOS tech- nology, the simulation results show that the voltage conversion efficiency and the power conversion efficiency can reach up to 90.5% and 95.5% respectively, when the input voltage equals to 0.2 V @ 100 Hz with load resistance 50 kW. Input voltages with frequencies in the range of 10 Hz-1 kHz can be rectified.展开更多
文摘In this paper,a novel pulse density modulation(PDM)with semi-bridgeless active rectifier(S-BAR)in inductive power transfer(IPT)system for rail vehicle is proposed.It is to reduce switching losses of the active rectifier in pickups.In the control method,the insulated-gate bipolar transistors(IGBTs)in the S-BAR are controlled by synchronous PDM signals,so that zero-voltage switching(ZVS)and zero-current switching(ZCS)can be achieved in the whole output power range.The output power is regulated by changing the pulse density(PD)of the S-BAR since the it is almost linear proportional with the PD in high quality factor of pickup side.The communication device between the primary side and pickup side is not necessary anymore.The detailed theoretical analyses of the PDM method are provided,and its advantages are shown in a 7.5kW IPT prototype for rail vehicle.The experimental results are presented to verify the analysis and demonstrate the performance.The overall efficiency of the system by PDM control is 74.2%which is improved by 4%compared with phase shift(PS)control at light load.
基金grants obtained from the National Natural Science Foundation of China (No.: 81170177, 81030002) and science and Technology De- partment of Gansu Province Project (145RJZ104).
文摘Objectives To evaluate the association between a KCNQ 1 mutation, R259H, and short QT syndrome (SQTS) and to explore the elec- trophysiological mechanisms underlying their association. Methods We performed genetic screening of SQTS genes in 25 probands and their family members (63 patients). We used direct sequencing to screen the exons and intron-exon boundaries of candidate genes that en- code ion channels which contribute to the repolarization of the ventricular action potential, including KCNQI, KCNH2, KCNE1, KCNE2, KCNJ2, CACNAlc, CACNB2b and CACNA2D1. In one of the 25 SQTS probands screened, we discovered a KCNQ1 mutation, R259H. We cloned R259H and transiently expressed it in HEK-293 cells; then, currents were recorded using whole cell patch clamp techniques. Results R259H-KCNQ 1 showed significantly increased current density, which was approximately 3-fold larger than that of wild type (WT) after a depolarizing pulse at 1 s. The steady state voltage dependence of the activation and inactivation did not show significant differences between the WT and R259H mutation (P 〉 0.05), whereas the time constant of deactivation was markedly prolonged in the mutant compared with the WT in terms of the test potentials, which indicated that the deactivation of R259H was markedly slower than that of the WT. These results suggested that the R259H mutation can effectively increase the slowly activated delayed rectifier potassium current (Irs) in phase 3 of the cardiac action potential, which may be an infrequent cause of QT interval shortening. Conclusions R259H is a gain-of-function muta- tion of the KCNQ1 channel that is responsible for SQTS2. This is the first time that the R259H mutation was detected in Chinese people.
基金This work was supported by the National Natural Science Foundation of China (30600253), Min&try of Edu- cation Key Project (207031) and Scientific Research Fundation for the Returned Chinese Scholars of Heilongjiang Province of China (LC07C20).
文摘Objective Abnormal QT prolongation associated with arrhythmias is considered the major cardiac electrical disorder and a significant predictor of mortality in diabetic patients. The precise ionic mechanisms for diabetic QT prolongation remained unclear. The present study was designed to analyze the changes of ventricular repolarization and the underlying ionic mechanisms in diabetic rabbit hearts. Methods Diabetes was induced by a single injection ofalloxan (145mg/kg, Lv. ). After the development of diabetes (10 weeks), ECG was measured. Whole-cell patch-clamp technique was applied to record the action potential duration (APD50, APD90), slowly activating outward rectifying potassium current (IKs), L-type calcium current (ICa-L) and inward rectifying potassium current (IK1). Results The action potential duration (APD50 and APD90) of ventricular myocytes was obviously prolonged from 271.5+32.3 ms and 347.8+36.3 ms to 556.6~72.5 ms and 647.9~72.2 ms respectively (P〈 0.05). Meanwhile the normalized peak current densities of IKs in ventricular myocytes investigated by whole-cell patch clamp was smaller in diabetic rabbits than that in control group at test potential of+50mV (1.27~0.20 pA/pF vs 3.08~0.67 pA/pF, P〈0.05). And the density of the ICa-L was increased apparently at the test potential of 10 mV (-2.67~0.41 pA/pF vs -5.404-1.08 pA/pF, P〈0.05). Conclusion Ventricular repolarization was prolonged in diabetic rabbits, it may be partly due to the increased L-type calcium current and reduced slow delayed rectifier K+ current (IKs) (J Geriatr Cardio12010; 7:25-29).
基金supported by the National Natural Science Foundation of China(Nos.61234002,61322405,61306044,61376033)the National High-Tech Program of China(No.2013AA014103)
文摘An ultra low voltage rectifier with high power conversion efficiency (PCE) for PE energy harvesting ap- plications is presented in this paper. This is achieved by utilizing the DTMOS which the body terminal is connected to the gate terminal in a diode connected transistor. This implementation facilitates the rectifier with dynamic con- trol over the threshold voltage. Moreover, we use input powered to take the place of output powered to reduce the power loss and thereby increasing the power conversion efficiency. Based on standard SMIC 0.18 μm CMOS tech- nology, the simulation results show that the voltage conversion efficiency and the power conversion efficiency can reach up to 90.5% and 95.5% respectively, when the input voltage equals to 0.2 V @ 100 Hz with load resistance 50 kW. Input voltages with frequencies in the range of 10 Hz-1 kHz can be rectified.