The S-scheme heterojunctions can effectively separate photogenerated electrons and holes,retain their high redox capacity,and provide great prospects for enhancing the photocatalytic activity of the composites in diff...The S-scheme heterojunctions can effectively separate photogenerated electrons and holes,retain their high redox capacity,and provide great prospects for enhancing the photocatalytic activity of the composites in different fields.Herein,S-scheme heterojunction photocatalytic materials were rationally designed and prepared by a simple hydrothermal method between narrow-bandgap red phosphorus(HRP)and wide-bandgap BaTiO_(3)(BTO)photocatalysts.Owing to the effective charge separation and redox ability from the S-scheme mechanism and oxygen vacancies,BTO/HRP exhibited good photoelectrochemical and photocatalytic degradation ability.Systematic photoreaction tests demonstrated that BTO/HRP had high practicality in the removal of pollutants from wastewater;its photodegradation rate of Rhodamine B reached 3.029×10^(−1) min^(−1) in 12 min;and it could inactivate 1.8×10^(9) CFU/mL of Escherichia.coli in 1 h,with an antibacterial rate of 99.8%.This paper provided a promising photocatalyst for pollutant removal and a new strategy for the fabrication of efficient RP-based photocatalytic materials.展开更多
Eu3+-activated Gd2(MoO4)3 pseudo-pompon-like red-emitting phosphors were prepared by solid-state method. The structure, morphology, and luminescent properties of these powder samples were investigated by X-ray diffrac...Eu3+-activated Gd2(MoO4)3 pseudo-pompon-like red-emitting phosphors were prepared by solid-state method. The structure, morphology, and luminescent properties of these powder samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and fluorescent spectrophotometry, respectively. The as-obtained phosphors were single crystalline phase with orthorhombic unit cell. The particles of the powder samples had the length of 5-12 m and width of 3-7 m with flake shape and large surface area, which is suitable for manufacture of white LEDs. The phosphor could be efficiently excited by the incident light of 348-425 nm, well matched with the output wavelength of near-UV (In,Ga)N chip, and re-emitted an intense red light peaking at 615 nm. By combing this phosphor with a ~395 nm-emitting (In,Ga)N chip, a red LED was fabricated, so that the applicability of this novel phosphor to white LEDs was confirmed. It is considered to be an efficient red-emitting conversion phosphor for solid-state lighting based on (In,Ga)N LEDs.展开更多
The objective of this study was to prepare a new photocatalyst with high activities for degradation of organic pollutants.Coupled ZrO_(2)/ZnO photocatalyst was prepared with a simple precipitation method with cheap ra...The objective of this study was to prepare a new photocatalyst with high activities for degradation of organic pollutants.Coupled ZrO_(2)/ZnO photocatalyst was prepared with a simple precipitation method with cheap raw materials zinc acetate and zirconium oxychloride,and was character-ized by X-ray diffraction(XRD)and transmission electron microscopy(TEM).Reactive brilliant red X-3B was used as a model compound to investigate the photocatalytic activity of synthesized catalysts in water under 254 nm UV irradia-tion.Results show that the optimal calcination temperature and coupling molar ratio of Zr were 350°C and 2.5%,respec-tively.At the calcination temperature of 350°C,ZrO_(2) was dispersed on the surface of hexagonal ZnO in the form of amorphous clusters.The particle size of ZrO_(2)/ZnO decreased with the decrease of calcination temperature and the increase of Zr coupling amount.ZrO_(2)/ZnO has better photocatalytic activity for degradation of reactive brilliant red(RBR)X-3B than pure ZnO and P25-TiO_(2).展开更多
基金financially supported by the National Natu-ral Science Foundation of China(Nos.52063028,22208275 and 22268003)the Ph.D.Startup Fund of Xinjiang Normal Univer-sity(No.XJNUBS1907)+1 种基金the Xinjiang Normal University Outstanding Young Teachers’Research Initiation Project(No.XJNU202015)the Innovation team for monitoring of emerging contaminants and biomarkers(No.2021D14017).
文摘The S-scheme heterojunctions can effectively separate photogenerated electrons and holes,retain their high redox capacity,and provide great prospects for enhancing the photocatalytic activity of the composites in different fields.Herein,S-scheme heterojunction photocatalytic materials were rationally designed and prepared by a simple hydrothermal method between narrow-bandgap red phosphorus(HRP)and wide-bandgap BaTiO_(3)(BTO)photocatalysts.Owing to the effective charge separation and redox ability from the S-scheme mechanism and oxygen vacancies,BTO/HRP exhibited good photoelectrochemical and photocatalytic degradation ability.Systematic photoreaction tests demonstrated that BTO/HRP had high practicality in the removal of pollutants from wastewater;its photodegradation rate of Rhodamine B reached 3.029×10^(−1) min^(−1) in 12 min;and it could inactivate 1.8×10^(9) CFU/mL of Escherichia.coli in 1 h,with an antibacterial rate of 99.8%.This paper provided a promising photocatalyst for pollutant removal and a new strategy for the fabrication of efficient RP-based photocatalytic materials.
基金Project supported by the Natural Science Research Project of the Jiangsu Higher Education Institutions (08KJD150014)the QingLan Project of the Jiangsu Province (2008)the Basic Research Fund of Jiangsu Teachers University of Technology (KYY09031)
文摘Eu3+-activated Gd2(MoO4)3 pseudo-pompon-like red-emitting phosphors were prepared by solid-state method. The structure, morphology, and luminescent properties of these powder samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and fluorescent spectrophotometry, respectively. The as-obtained phosphors were single crystalline phase with orthorhombic unit cell. The particles of the powder samples had the length of 5-12 m and width of 3-7 m with flake shape and large surface area, which is suitable for manufacture of white LEDs. The phosphor could be efficiently excited by the incident light of 348-425 nm, well matched with the output wavelength of near-UV (In,Ga)N chip, and re-emitted an intense red light peaking at 615 nm. By combing this phosphor with a ~395 nm-emitting (In,Ga)N chip, a red LED was fabricated, so that the applicability of this novel phosphor to white LEDs was confirmed. It is considered to be an efficient red-emitting conversion phosphor for solid-state lighting based on (In,Ga)N LEDs.
文摘The objective of this study was to prepare a new photocatalyst with high activities for degradation of organic pollutants.Coupled ZrO_(2)/ZnO photocatalyst was prepared with a simple precipitation method with cheap raw materials zinc acetate and zirconium oxychloride,and was character-ized by X-ray diffraction(XRD)and transmission electron microscopy(TEM).Reactive brilliant red X-3B was used as a model compound to investigate the photocatalytic activity of synthesized catalysts in water under 254 nm UV irradia-tion.Results show that the optimal calcination temperature and coupling molar ratio of Zr were 350°C and 2.5%,respec-tively.At the calcination temperature of 350°C,ZrO_(2) was dispersed on the surface of hexagonal ZnO in the form of amorphous clusters.The particle size of ZrO_(2)/ZnO decreased with the decrease of calcination temperature and the increase of Zr coupling amount.ZrO_(2)/ZnO has better photocatalytic activity for degradation of reactive brilliant red(RBR)X-3B than pure ZnO and P25-TiO_(2).