期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A robust and efficient structural reliability method combining radial-based importance sampling and Kriging 被引量:5
1
作者 XIONG Bo TAN HuiFeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第5期724-734,共11页
Simulation based structural reliability analysis suffers from a heavy computational burden, as each sample needs to be evaluated on the performance function, where structural analysis is performed. To alleviate the co... Simulation based structural reliability analysis suffers from a heavy computational burden, as each sample needs to be evaluated on the performance function, where structural analysis is performed. To alleviate the computational burden, related research focuses mainly on reduction of samples and application of surrogate model, which substitutes the performance function. However,the reduction of samples is achieved commonly at the expense of loss of robustness, and the construction of surrogate model is computationally expensive. In view of this, this paper presents a robust and efficient method in the same direction. The present method uses radial-based importance sampling (RBIS) to reduce samples without loss of robustness. Importantly, Kriging is fully used to efficiently implement RBIS. It not only serves as a surrogate to classify samples as we all know, but also guides the procedure to determine the optimal radius, with which RBIS would reduce samples to the highest degree. When used as a surrogate, Kriging is established through active learning, where the previously evaluated points to determine the optimal radius are reused. The robustness and efficiency of the present method are validated by five representative examples, where the present method is compared mainly with two fundamental reliability methods based on active learning Kriging. 展开更多
关键词 structural reliability simulation radial-based importance sampling Kriging active learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部