In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are...In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are based on the concept of ice nucleation active surface site density (<i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;">). It is usually assumed that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> is independent of time and aerosol size distribution, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> that the surface properties of aerosols of the same species do not vary with size. However, the independence of </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> on aerosol size for every species has been questioned. This study presents the results of ice nucleation processes of ATD laboratory-generated aerosol (particle diameters of 0 - 3 μm). Ice nucleation in the condensation mode was performed in a Dynamic Filter Processing Cham- ber at temperatures of </span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span style="font-family:Verdana;">18<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and </span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span><span style="font-family:Verdana;">22<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, with a saturation ratio with respect to water of 1.02. Results show that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> increased by lowering the nucleation temperature, and was also dependent on the particle size. The </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> of particles collected on the filters, after a 0.5 μm D</span><sub><span style="font-family:Verdana;">50</span></sub><span style="font-family:Verdana;"> cut-off cyclone, resulted statistically higher with respect to the values obtained from the particles collected on total filters. The results obtained suggest the need for further investigation of </span><i><span style="font-family:Verdana;">n</span></i><sub><span style="font-family:Verdana;">s</span></sub><span style="font-family:Verdana;"> dependence of same composition aerosol particles with a view to support weather and climate predictions.</span></span></span>展开更多
文摘In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are based on the concept of ice nucleation active surface site density (<i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;">). It is usually assumed that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> is independent of time and aerosol size distribution, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> that the surface properties of aerosols of the same species do not vary with size. However, the independence of </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> on aerosol size for every species has been questioned. This study presents the results of ice nucleation processes of ATD laboratory-generated aerosol (particle diameters of 0 - 3 μm). Ice nucleation in the condensation mode was performed in a Dynamic Filter Processing Cham- ber at temperatures of </span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span style="font-family:Verdana;">18<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and </span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span><span style="font-family:Verdana;">22<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, with a saturation ratio with respect to water of 1.02. Results show that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> increased by lowering the nucleation temperature, and was also dependent on the particle size. The </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> of particles collected on the filters, after a 0.5 μm D</span><sub><span style="font-family:Verdana;">50</span></sub><span style="font-family:Verdana;"> cut-off cyclone, resulted statistically higher with respect to the values obtained from the particles collected on total filters. The results obtained suggest the need for further investigation of </span><i><span style="font-family:Verdana;">n</span></i><sub><span style="font-family:Verdana;">s</span></sub><span style="font-family:Verdana;"> dependence of same composition aerosol particles with a view to support weather and climate predictions.</span></span></span>