期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Degradation of Organic Compounds by Active Species Sprayed in a Dielectric Barrier Corona Discharge System 被引量:4
1
作者 李杰 宋玲 +3 位作者 刘强 屈广周 李国锋 吴彦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第2期211-215,共5页
Investigation was made into the degradation of organic compounds by a dielectric barrier corona discharge (DBCD) system. The DBCD, consisting of a quartz tube, a concentric high voltage electrode and a net wrapped t... Investigation was made into the degradation of organic compounds by a dielectric barrier corona discharge (DBCD) system. The DBCD, consisting of a quartz tube, a concentric high voltage electrode and a net wrapped to the external wall (used as ground electrode), was introduced to generate active species which were sprayed into the organic solution through an aerator fixed on the bottom of the tube. The effect of four factors-the discharge voltage, gas flow rate, solution conductivity, and pH of wastewater, on the degradation efficiency of phenol was assessed. The obtained results demonstrated that this process was an effective method for phenol degradation. The degradation rate was enhanced with the increase in power supplied. The degradation efficiency in alkaline conditions was higher than those in acid and neutral conditions. The optimal gas flow rate for phenol degradation in the system was 1.6 L/min, while the solution conductivity had little effect on the degradation. 展开更多
关键词 dielectric barrier corona discharge (DBCD) active species organic compound degradation wastewater treatment
下载PDF
Understanding of the structural evolution of catalysts and identification of active species during CO_(2) conversion
2
作者 Li Li Fanpeng Chen +1 位作者 Bohang Zhao Yifu Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期17-30,共14页
Converting CO_(2) into value-added chemicals and fuels through various catalytic methods to lower the atmospheric CO_(2) concentration has been developed to be a crucial means to alleviate the energy shortage and amel... Converting CO_(2) into value-added chemicals and fuels through various catalytic methods to lower the atmospheric CO_(2) concentration has been developed to be a crucial means to alleviate the energy shortage and ameliorate the ever-fragile environment status. However, the complexity of the CO_(2) conversion reaction and the strong reduction conditions lead to the inevitable structural evolution, making it difficult for the prior design of suitable catalytic materials. Herein, to guide the rational design of efficient catalysts,we will be centered on the thermal, electro, and photo-induced structural evolution and active species identification during the CO_(2) conversion, including the in situ/operando characterization techniques monitoring the activation, steady, and deactivation stage of the catalysts as well as the inherent restructuring mechanism towards active species. Besides, the future challenges and opportunities on the merits of combining the structural evolution with the adsorbed intermediates recognized by ultra-fast spectroscopic techniques, simultaneously, the combination of theoretical simulation and the results of in situ experiments will also be addressed. This review can not only guide the identification of real active species, but also provide an approach to design the specific active species towards CO_(2) conversion, rather than only focusing on activity, for the purpose of practical industrial application. 展开更多
关键词 CO_(2) Structural evolution active species In situ OPERANDO
原文传递
Aromatization over nanosized Ga-containing ZSM-5 zeolites prepared by different methods:Effect of acidity of active Ga species on the catalytic performance 被引量:8
3
作者 Yujun Fang Xiaofang Su +4 位作者 Xuefeng Bai Wei Wu Gaoliang Wang Linfei Xiao Anran Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期768-775,共8页
Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of... Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content. 展开更多
关键词 Nanosized ZSM-5 zeolite Isomorphous substitution IMPREGNATION active gallium species AROMATIZATION
下载PDF
Au^(δ-)-O_(v)-Ti^(3+):Active site of MO_(x)-Au/TiO_(2) catalysts for the aerobic oxidation of 5-hydroxymethylfurfural
4
作者 Weiyao Yang Mengchen Fu +2 位作者 Chenyu Yang Yiwen Zhang Chun Shen 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期785-797,共13页
Despite wide applications of noble metal-based catalysts in 5-hydroxymethylfurfural(HMF)oxidation,promoting the catalytic performance at low loading amounts still remains a significant challenge.Herein,a series of met... Despite wide applications of noble metal-based catalysts in 5-hydroxymethylfurfural(HMF)oxidation,promoting the catalytic performance at low loading amounts still remains a significant challenge.Herein,a series of metal oxide modified MO_(x)-Au/TiO_(2)(M=Fe,Co,Ni)catalysts with low Au loading amount of 0.5 wt%were synthesized.Addition of transition metal oxides promotes electron transfer and generation of the Au^(δ-)-O_(v)-Ti^(3+)interface.A combination study reveals that the dual-active site(Au^(δ-)-O_(v)-Ti^(3+))governs the catalytic performance of the ratedetermining step,namely hydroxyl group oxidation.Au^(δ-) site facilitates chemisorption and activation of O_(2) molecules.At the same time,O_(v)-Ti^(3+) site acts as the role of“killing two birds with one stone”:enhancing adsorption of both reactants,accelerating the activation and dissociation of H_(2)O,and facilitating activation of the adsorbed O_(2).Besides,superoxide radicals instead of base is the active oxygen species during the rate-determining step.On this basis,a FDCA yield of 71.2% was achieved under base-free conditions,complying with the“green chemistry”principle.This work provides a new strategy for the transition metal oxides modification of Au-based catalysts,which would be constructive for the rational design of other heterogeneous catalysts. 展开更多
关键词 5-HYDROXYMETHYLFURFURAL Base-free oxidation Interfacial catalysis active oxygen species
下载PDF
Effects of Different Cadmium Levels on Active Oxygen Metabolism and H_2O_2-Scavenging System in Brassica campestris L.ssp.chinensis
5
作者 SUNGuang-wen ZHUZhu-jun FANGXue-zhi 《Agricultural Sciences in China》 CAS CSCD 2004年第4期305-309,共5页
The effects of different Cd (Cadmium) levels on generation of active oxygen speceies(AOS) and H2O2-scavenging system in the leaves of Brassica campestris L. ssp. chinensiswere studied. The results showed that generat... The effects of different Cd (Cadmium) levels on generation of active oxygen speceies(AOS) and H2O2-scavenging system in the leaves of Brassica campestris L. ssp. chinensiswere studied. The results showed that generation rate, and H2O2 content were enhancedand malondialdehyde (MDA) content increased with the increase of Cd concentrations inthe growth medium. The activities of ascorbate peroxidase (APX), dehydroascorbatereductase (DR) and glutathione reductase (GR) were promoted by the addition of Cd.Exposed to Cd also increased the contents of ascorbate (AsA) and glutathione (GSH) in theleaves. 展开更多
关键词 Brassica campestris L.ssp.chinensis Cadmium active oxygen species Glutathione Ascorbate H2O2-scavenging enzymesO2_
下载PDF
Simultaneous oxidation of NO,SO_2 and Hg^0 from flue gas by pulsed corona discharge 被引量:22
6
作者 XU Fei,LUO Zhongyang,CAO Wei,WANG Peng,WEI Bo,GAO Xiang,FANG Mengxiang,CEN Kefa State key Laboratory of Clean Energy Utilization,Zhejiang University,Hangzhou 310027,China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第3期328-332,共5页
A process capable of simultaneously oxidizing NO, SO2, and Hg^0 was proposed, using a nigh-voltage and short-duration positive pulsed corona discharge. By focusing on NO, SO2, and Hg^0 oxidation efficiencies, the infl... A process capable of simultaneously oxidizing NO, SO2, and Hg^0 was proposed, using a nigh-voltage and short-duration positive pulsed corona discharge. By focusing on NO, SO2, and Hg^0 oxidation efficiencies, the influences of pulse peak voltage, pulse frequency, initial concentration, electrode number, residence time and water vapor addition were investigated. The results indicate that NO, SO2 and Hg^0 oxidation efficiencies depend primarily on the radicals (OH, HO2, O) and the active species (O3, H2O2, etc.) produced by the pulsed corona discharge. The NO, SO2 and Hg^0 oxidation efficiencies could be improved as pulse peak voltage, pulse frequency, electrode number and residence time increased, but they were reduced with increasing initial concentrations. By adding water vapor, the SO2 oxidation efficiency was improved remarkably, while the NO oxidation efficiency decreased slightly. In our experiments, the simultaneous NO, SO2, and Hg^0 oxidation efficiencies reached to 40%, 98%, and 55% with the initial concentrations 479 mg/m^3, 1040 mg/m^3, and 15.0 μg/m^3, respectively. 展开更多
关键词 pulsed corona discharge NO SO2 Hg^0 RADICAL active species oxidation efficiency
下载PDF
Preliminary study of an open-air water-contacting discharge for direct nitrogen fixation 被引量:1
7
作者 舒展 汪传奇 +5 位作者 Insaf HOSSAIN 陈强 李婉莲 王晋琪 刘鹏飞 熊青 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第3期93-101,共9页
Efficient nitrogen fixation through a reactive plasma process attracts intense interest due to the environmental issues induced by the conventional Haber–Bosch method. In this work, we present a direct and simple fix... Efficient nitrogen fixation through a reactive plasma process attracts intense interest due to the environmental issues induced by the conventional Haber–Bosch method. In this work, we present a direct and simple fixation routine without any catalysts for nitrogen in open air using an atmospheric-pressure pin-to-solution plasma electrolytic system. Nitrate, nitrite, and ammonia as the nitrogen-derived chemicals in solution were analyzed as indicators under various discharge conditions to estimate the energy efficiency of this process. The results show that the nitrogen fixation process was much more efficient by the pin-positive discharge compared to the negative one. N chemicals preferred to be formed when the solution was of negative polarity. It was also found that, with the help of solution circulation, the energy efficiency was enhanced compared to that of static liquid. However, an inverse trend was observed with the increase of the discharge current. Further study by optical emission spectroscopy indicates the important roles of active N2* and water vapour and their derived species near the plasma–water interface in the fixation process. 展开更多
关键词 nitrogen fixation air-water discharge energy efficiency active species plasma-water interface
下载PDF
Experimental Research on the Sterilization of Escherichia Coli and Bacillus Subtilis in Drinking Water by Dielectric Barrier Discharge 被引量:1
8
作者 李洋 依成武 +2 位作者 李京京 依蓉婕 王慧娟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第2期173-178,共6页
The bactericidal effect on the representative type of Gram-negative Escherichia coli(E.coli) and Gram-positive Bacillus subtilis in drinking water was investigated in this paper by using dielectric barrier discharge... The bactericidal effect on the representative type of Gram-negative Escherichia coli(E.coli) and Gram-positive Bacillus subtilis in drinking water was investigated in this paper by using dielectric barrier discharge(DBD) advanced oxidation technology.The sterilizing rates under different conditions of reaction time t,input voltage V,p H value,and initial concentration of bacteria C_0 were investigated to figure out the optimum sterilization conditions.Our observations and comparisons of cell morphology alteration by scanning electron microscopy and transmission electron microscopy revealed the sterilization mechanisms.The results showed that the sterilizing rate increased obviously with the extension of reaction time t and the rise of input voltage V.The optimal sterilization effect was achieved when the p H value was 7.1.As the initial concentration of bacteria rose,the sterilizing rate decreased.When the input voltage was 2.2 k V and the initial concentration of bacteria was relatively low,the sterilizing rate almost reached 100% after a certain treatment time in neutral aqueous solution.The reasons for the great damage of cell structure and the killing of bacteria are the oxidation of O_3,OH and the accumulation of active species produced by DBD.The article provides a certain theoretical and experimental basis for DBD application in water pollution treatment. 展开更多
关键词 E.coli BSN drinking water active species sterilizing rate
下载PDF
Activation and surface reactions of CO and H2 on ZnO powders and nanoplates under CO hydrogenation reaction conditions
9
作者 Liyuan Zhang Xuanyu Zhang +5 位作者 Kun Qian Zhaorui Li Yongqiang Cheng Luke LDaemen Zili Wu Weixin Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期351-357,共7页
Activation and surface reactions of CO and H2 on ZnO powders and nanoplates under CO hydrogenation reaction conditions were(quasi) in situ studied using temperature programmed surface reaction spectra, diffuse reflect... Activation and surface reactions of CO and H2 on ZnO powders and nanoplates under CO hydrogenation reaction conditions were(quasi) in situ studied using temperature programmed surface reaction spectra, diffuse reflectance Fourier transform infrared spectroscopy, inelastic neutron scattering spectroscopy and electron paramagnetic resonance. CO undergoes disproportion reaction to produce gaseous CO2 and surface carbon adatoms, and adsorbs to form surface formate species. H2 adsorption forms dominant irreversibly-adsorbed surface hydroxyl groups and interstitial H species and very minor surface Zn-H species. Surface formate species and hydroxyl groups react to produce CO2 and H2, while surface carbon adatoms are hydrogenated by surface Zn-H species sequentially to produce CH(a), CH2(a), CH3(a)and eventually gaseous CH4. The ZnO nanoplates, exposing a higher fraction of Zn-ZnO(0001) and OZnO(000–1) polar facets, are more active than the ZnO powders to catalyze CO hydrogenation to CH4.These results provide fundamental understanding of the reaction mechanisms and structural effects of CO hydrogenation reaction catalyzed by ZnO-based catalysts. 展开更多
关键词 active species Surface intermediates Reaction mechanism TPSR DRIFTS INS EPR
下载PDF
Contrasting Behaviours of AC and DC Excited Plasmas in Contact with Liquid
10
作者 柳晶晶 胡晓 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第8期768-775,共8页
A comparative study of the needle-to-liquid plasma in the continuous mode with DC and AC excitations is detailed in this paper. All plasmas studied here are shown to be glow discharges. This study is based on measurem... A comparative study of the needle-to-liquid plasma in the continuous mode with DC and AC excitations is detailed in this paper. All plasmas studied here are shown to be glow discharges. This study is based on measurements of several key parameters, including electrical energy, optical emission intensities of active species, rotational and vibrational temperatures, and temperatures of the needle and liquid electrodes. AC plasmas can produce 1.2~5 times higher excited state active species than DC plasmas under the same dissipated power. AC excited liquid plasmas have the highest energy utilization efficiency among the three systems (AC excited plasmas, DC excited plasmas with water anode and DC excited plasmas with water cathode); most of the energy is used to produce useful species rather than to heat the electrodes and plasmas. 展开更多
关键词 electrical energy active species rotational temperature vibrational temperature energy use efficiency
下载PDF
Atmospheric Pressure Plasma Jet in Organic Solution:Spectra,Degradation Effects of Solution Flow Rate and Initial pH Value
11
作者 陈秉岩 朱昌平 +5 位作者 陈龙威 费峻涛 高莹 文文 单鸣雷 任兆杏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第12期1126-1134,共9页
The organic compounds of p-nitrophenol (PNP) solution was treated by the active species generated in a stirred reactor by an atmospheric pressure plasma jet (APPJ). The emission intensities of hydroxyl (OH), oxy... The organic compounds of p-nitrophenol (PNP) solution was treated by the active species generated in a stirred reactor by an atmospheric pressure plasma jet (APPJ). The emission intensities of hydroxyl (OH), oxygen (O), nitric oxide (NO), hydrogen (H) and molecular (N2) were measured by optical emission spectroscopy (OES). The relations between the flow rates of the PNP solution and degradation, the degradation effects and initial pH value of the solution were also investigated. Experimental results show that there exist intense emissions of O (777.1 nm), N(337.1 nm), OH (306-310 nm) and NO band (200-290 nm) in the region of plasma. Given the treatment time and gas flow rate, the degradation increased as a function of discharge energy and solution flow rate, respectively. The solution flow rate for the most efficient degradation ranged from 1.414 m/s to 1.702 m/s, and contributed very little when it exceeded 2.199 m/s. This indicates the existence of diffusion-controlled reactions at a low solution flow rate and activation- controlled reactions at a high solution flow rate. Moreover, increasing or decreasing the initial pH value of neutral PNP solution (pH=5.95) could improve the degradation efficiency. Treated by APPJ, the PNP solutions with different initial pH values of 5.95, 7.47 and 2.78 turned more acidic in the end, while the neutral solution had the lowest degradation efficiency. This work clearly demonstrates the close coupling of active species, photolysis of ultraviolet, the organic solution flow rate and the initial pH value, and thus is helpful in the study of the mechanism and application of plasma in wastewater treatment. 展开更多
关键词 atmospheric pressure plasma jet active species organic solution degradation optical emission spectroscopy (OES)
下载PDF
Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene 被引量:14
12
作者 Shunzheng Zhao Yanfeng Wen +8 位作者 Xijun Liu Xianyun Pen Fang Lü Fengyu Gao Xizhou Xie Chengcheng Du Honghong Yi Dongjuan Kang Xiaolong Tang 《Nano Research》 SCIE EI CAS CSCD 2020年第6期1544-1551,共8页
Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds(VOCs).However,to fully understand the activation of molecular oxygen and the role of... Catalytic oxidation of toluene over noble metal catalysts is a representative reaction for elimination of volatile organic compounds(VOCs).However,to fully understand the activation of molecular oxygen and the role of active oxygen species generated in this reaction is still a challenging target.Herein,MgO nanosheets and single-atom Pt loaded MgO(Pt SA/MgO)nanosheets were synthesized and used as catalysts in toluene oxidation.The activation process of molecular oxygen and oxidation performance on the two catalysts were contrastively investigated.The Pt SA/MgO exhibited significantly enhanced catalytic activity compared to MgO.The oxygen vacancies can be easily generated on the Pt SA/MgO surface,which facilitate the activation of molecular oxygen and the formation of active oxygen species.Based on the experimental data and theoretical calculations,an active oxygen species promoted oxidation mechanism for toluene was proposed.In the presence of H2O,the molecular oxygen is more favorable to be dissociated to generate•OH on the oxygen vacancies of the Pt SA/MgO surface,which is the dominant active oxygen species.We anticipate that this work may shed light on further investigation of t10.1007/s12274-020-2765-1he oxidation mechanism of toluene and other VOCs over noble metal catalysts. 展开更多
关键词 single-atom Pt activation of molecular oxygen oxygen vacancies active oxygen species oxidation of toluene
原文传递
Active oxygen species and oxidation mechanism over Ce-doped LaMn_(0.8)Ni_(0.2)O_(3)/hierarchical ZSM-5 in pentanal oxidation 被引量:3
13
作者 Jian Li Yingjie Shi +5 位作者 Xiaoheng Fu Yun Shu Jiayu Huang Jinwei Zhu Gang Tian Jingnan Hu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第9期1062-1072,共11页
Hierarchical ZSM-5(HZ)molecular sieves based on fly ash were synthesized using a method combining water heat treatment with step-by-step calcination.The coupling catalysts between La_(1-x)Ce_(x)Mn_(0.8)-Ni_(0.2)O_(3)(... Hierarchical ZSM-5(HZ)molecular sieves based on fly ash were synthesized using a method combining water heat treatment with step-by-step calcination.The coupling catalysts between La_(1-x)Ce_(x)Mn_(0.8)-Ni_(0.2)O_(3)(x≤0.5)perovskites and HZ were prepared through the impregnation method,which were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),N_(2)adsorption,X-ray photoelectron spectroscopy(XPS),NH3-temperature programmed desoprtion(NH3-TPD),H_(2)-temperature programmed reduction(H_(2)-TPR)and O_(2)-TPD techniques and investigated regarding pentanal oxidation at 120-390℃to explore the effects of Ce doping on the catalytic activity and the active oxygen species of the coupling catalysts,meanwhile,the reaction mechanism and pathway of pentanal oxidation were also studied.The results reveal that Ce substitution at La sites can change the electronic interactions between all the elements and promote the electronic transfer among La,Ce,Ni,Mn and HZ,influencing directly the physicochemical characteristics of the catalysts.Moreover,the amount and transfer ability of surface adsorbed oxygen(O_(2)-and O-)regarded as the reactive oxygen species and the low temperature reducibility are the main influence factors in pentanal oxidation.Additionally,La_(0.8)Ce_(0.2)Mn_(0.8)Ni_(0.2)O_(3)/HZ exhibits the best catalytic activity and deep oxidation capacity as well as a better water resistance due to its larger amount of surface adsorbed oxygen species and higher low temperature reducibility.What’s more,appropriate Ce substitution can significantly enhance the amount of O_(2)-ions,which can distinctly enhance the catalytic activity of the catalyst,and moderate acid strength and appropriate acid amount can also facilitate the improvement of the pentanal oxidation activity.It is found that there is a synergic catalytic effect between surface acidity and redox ability of the catalyst.According to the in situ DRIFTS and GC/MS analyses,pentanal can be oxidized gradually to CO_(2)and H_(2)O by the surface oxygen species with the form of adsorption in air following the Langmuir-Hinshelwood(L-H)reaction mechanism.Two reaction pathways for the pentanal oxidation process are proposed,and the conversion of the formates to carbonates may be one of the main rate-determining steps. 展开更多
关键词 Hierarchical ZSM-5 molecular sieve Catalytic oxidation active oxygen species PEROVSKITE Ce doping Rare earths
原文传递
Synergistic mechanism between Bronsted acid site and active cerium species in hydride transfer reaction over CeY zeolites 被引量:2
14
作者 Jianhao Jiao Yucai Qin +4 位作者 Jian Zheng Yu Hui Li Zhang Xionghou Gao Lijuan Song 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第8期912-920,I0003,共10页
In this study,cyclohexene was used as a representative of olefin and catalyzed by CeY zeolites in a fixedbed reactor under mild conditions,and the influence of Ce species in hydride transfer reaction over CeY zeolites... In this study,cyclohexene was used as a representative of olefin and catalyzed by CeY zeolites in a fixedbed reactor under mild conditions,and the influence of Ce species in hydride transfer reaction over CeY zeolites was evaluated.CeY zeolites show more excellent hydride transfer properties than HY zeolite.Based on the results of almost identical Bronsted acid properties but not the product distributions for 0.075 CeY and 0.075 CeY(DC)samples,it should be suggested that the Bronsted acid strength and density are not the deciding factors to the hydride transfer reaction.A unique band at 1442 cm^-1 in situ FTIR spectroscopy spectra are assigned to pyridine complexes bonded to a class of active Ce species that could reversibly migrate from the core of SOD cages to its 6-rings mouth towards the supercages.These results provide valuable information that these active Ce species should play a synergistic role with the Bronsted acid sites in enhancing the hydride transfer reaction with a bimolecular mechanism over CeY zeolites. 展开更多
关键词 CeY zeolites Hydride transfer Synergistic mechanism active Ce species Bronsted acid Rare earths
原文传递
Role of oxygen vacancies and Sr sites in SrCo_(0.8)Fe_(0.2)O_3 perovskite on efficient activation of peroxymonosulfate towards the degradation of aqueous organic pollutants 被引量:2
15
作者 Li Yang Yong Jiao +2 位作者 Dongyan Jia Yanzhi Li Chuanhua Liao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期269-277,共9页
Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially des... Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially designed a perovskite oxide with abundant oxygen vacancies,SrCo_(0.8)Fe_(0.2)O_(3)(SCF),and firstly applied it as a catalyst in peroxymonosulfate(PMS) activation towards organic pollutants degradation.The result revealed that the prepared SCF catalyst exhibited excellent performance on organic compounds degradation.Besides,SCF showed much better activity than La_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3)(LSCF) in terms of reaction rate and stability for the degradation of the organic compounds.Based on the analysis of scanning electron microscope,transmission electron microscope,X-ray diffraction,N_(2) adsorption-desorption,X-ray photoelectron spectroscopy and electron paramagnetic resonance,it was confirmed that the perovskite catalysts with high content of Sr doping at A-site could effectively create a defect-rich surface and optimize its physicochemical properties,which was responsible for the excellent heterogeneous catalytic activity of SCF.SCF can generate three highly active species:~1 O_(2),SO_(4)^(-)· and ·OH in PMS activation,revealing the degradation process of organic compounds was a coupled multiple active species in both radical and nonradical pathway.Moreover,it was mainly in a radical pathway in the degradation through PMS activation on SCF and SO_(4)^(-)· radicals produced were the dominant species in SCF/PMS system.This study demonstrated that perovskite-type catalysts could enrich OVs efficiently by doping strategy and regulate the PMS activation towards sulfate radical-based AOPs. 展开更多
关键词 PEROVSKITE Catalysis Activation of peroxymonosulfate active oxygen species Degradation of organic compounds
下载PDF
Effects of Short-Term Chilling Stress on the Photosystems and Chloroplast Ultrastructure in Sweet Pepper 被引量:1
16
作者 LIXin-guo BIYu-ping +3 位作者 ZHAOShi-jie MENGQing-wei HEQi-wei ZouQi 《Agricultural Sciences in China》 CAS CSCD 2005年第6期429-435,共7页
By measuring chlorophyll fluorescence parameters, composition of fatty acids, active oxygen species and activities ofsome antioxidant enzymes, effects of chilling stress (4C) in the low light (100 mmol m-2 s-1) on chi... By measuring chlorophyll fluorescence parameters, composition of fatty acids, active oxygen species and activities ofsome antioxidant enzymes, effects of chilling stress (4C) in the low light (100 mmol m-2 s-1) on chilling-sensitive plants werestudied. After 6 h chilling stress (4C) in the low light, the maximal photochemical efficiency of PSII (Fv/Fm) of sweetpepper leaves decreased by 35.6%, and the oxidizable P700 decreased by 60%. However, chilling stress in the dark had noeffect on both of them. Unsaturation of fatty acids in thylakoid membrane was accelerated, which might be helpful tostabilize photosynthetic apparatus. Distortion and swelling of grana caused by chilling in the dark probably decreasedactivities of antioxidant enzymes, which resulted in the accumulation of active oxygen species. On the contrary,photooxidation might be related to the disintegration and unstacking of grana. Chilling stress induced photoinhibition ofPSII and PSI, and active oxygen species might be one of the factors causing the decrease of the oxidizable P700. PSIseemed to be more sensitive to chilling stress in the low light than PSII. 展开更多
关键词 Sweet pepper Chilling stress in the low light ULTRASTRUCTURE Composition of fatty acids active oxygen species
下载PDF
Direct conversion of methane to methanol by electrochemical methods
17
作者 Haomin Jiang Luting Zhang +6 位作者 Zhiwei Han Yang Tang Yanzhi Sun Pingyu Wan Yongmei Chen Morris D.Argyle Maohong Fan 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1132-1142,共11页
A convenient method for methane(CH_(4))direct conversion to methanol(CH_(3)OH)is of great significance to use methane-rich resources,especially clathrates and stranded shale gas resources located in remote regions.The... A convenient method for methane(CH_(4))direct conversion to methanol(CH_(3)OH)is of great significance to use methane-rich resources,especially clathrates and stranded shale gas resources located in remote regions.Theoretically,the activation of CH_(4) and the selectivity to the CH_(3)OH product are challenging due to the extreme stability of CH_(4) and relatively high reactivity of CH_(3)OH.The state-of-the-art‘methane reforming-methanol synthesis’process adopts a two-step strategy to avoid the further reaction of CH_(3)OH under the harsh conditions required for CH_(4) activation.In the electrochemical field,researchers are trying to develop conversion pathways under mild conditions.They have found suitable catalysts to activate the C–H bonds in methane with the help of external charge and have designed the electrode reactions to continuously generate certain active oxygen species.These active oxygen species attack the activated methane and convert it to CH_(3)OH,with the benefit of avoiding over-oxidation of CH_(3)OH,and thus obtain a high conversion efficiency of CH_(4) to CH_(3)OH.This mini-review focuses on the advantages and challenges of electrochemical conversion of CH4 to CH_(3)OH,especially the strategies for supplying electro-generated active oxygen species in-situ to react with the activated methane. 展开更多
关键词 METHANE METHANOL Direct conversion Electrochemical methods active oxygen species
下载PDF
Elucidating the effect of barium halide promoters on La_(2)O_(3)/CaO catalyst for oxidative coupling of methane
18
作者 Yue Wang Xiao Yang +6 位作者 Fumin Yin Kai Zhang Hongfei Guo Guowei Wang Guiyuan Jiang Chunyi Li Xiaolin Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期49-59,I0003,共12页
The industrialization of oxidative coupling of methane(OCM)is restricted by the low once through yield of C_(2)hydrocarbons.Recently,the halogen-assisted OCM process has been attempted to overcome this issue,but the r... The industrialization of oxidative coupling of methane(OCM)is restricted by the low once through yield of C_(2)hydrocarbons.Recently,the halogen-assisted OCM process has been attempted to overcome this issue,but the reaction stability was poor due to the rapid loss of gas-phase halides or molten alkali halides.In this work,the barium salts,particularly barium halides(BaCl_(2)and BaF_(2)),were demonstrated to be efficient promoters to improve the OCM reactivity of La_(2)O_(3)/CaO catalyst by increasing both C_(2)selectivity and C_(2)H_(4)/C_(2)H_(6)ratio,and simultaneously achieving outstanding reaction stability.The promoting mechanism can be understood in two aspects.On the one hand,the introduction of barium salts increased the amount of surface electrophilic oxygen species,serving as the alkaline active sites for selective methane activation.On the other hand,the barium halide additives induced the in-situ formation of methyl halide intermediates facilitating C_(2)H_(6)dehydrogenation,and their intimate contact with catalyst substrate restricted the rapid halogen loss and thereby improved the catalytic stability.This work not only provides a class of efficient OCM catalyst,but also offers a highly stable halogen-assisted reaction strategy. 展开更多
关键词 Oxidative coupling of methane La_(2)O_(3)/CaO catalyst Barium halide promoters active oxygen species Methyl halide intermediates
下载PDF
Edaravone protects against oxygen-glucose-serum deprivation/restoration-induced apoptosis in spinal cord astrocytes by inhibiting integrated stress response 被引量:2
19
作者 Bin Dai Ting Yan +7 位作者 Yi-xing Shen You-jia Xu Hai-bin Shen Dong Chen Jin-rong Wang Shuang-hua He Qi-rong Dong Ai-liang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期283-289,共7页
We previously found that oxygen-glucose-serum deprivation/restoration(OGSD/R) induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-... We previously found that oxygen-glucose-serum deprivation/restoration(OGSD/R) induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2-alpha(eIF2α) and activating transcription factor 4(ATF4). We hypothesized that edaravone, a low molecular weight, lipophilic free radical scavenger, would reduce OGSD/R-induced apoptosis of spinal cord astrocytes. To test this, we established primary cultures of rat astrocytes, and exposed them to 8 hours/6 hours of OGSD/R with or without edaravone(0.1, 1, 10, 100 μM) treatment. We found that 100 μM of edaravone significantly suppressed astrocyte apoptosis and inhibited the release of reactive oxygen species. It also inhibited the activation of caspase-12 and caspase-3, and reduced the expression of homologous CCAAT/enhancer binding protein, phosphorylated(p)-PERK, p-eIF2α, and ATF4. These results point to a new use of an established drug in the prevention of OGSD/R-mediated spinal cord astrocyte apoptosis via the integrated stress response. 展开更多
关键词 nerve regeneration edaravone apoptosis astrocytes integrated stress response reactive oxygen species PERK eIF2α activating transcription factor 4 CCAAT/enhancer binding protein homologous protein caspase-3 caspase-12 neural regeneration
下载PDF
Degradation of carbamazepine by MWCNTs-promoted generation of high-valent iron-oxo species in a mild system with O-bridged iron perfluorophthalocyanine dimers
20
作者 Zhiguo Zhao Moyan Zhou +3 位作者 Nan Li Yuyuan Yao Wenxing Chen Wangyang Lu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第1期260-266,共7页
Metal phthalocyanine has been extensively studied as a catalyst for degradation of carbamazepine(CBZ).However,metal phthalocyanine tends to undergo their own dimerization or polymerization,thereby reducing their activ... Metal phthalocyanine has been extensively studied as a catalyst for degradation of carbamazepine(CBZ).However,metal phthalocyanine tends to undergo their own dimerization or polymerization,thereby reducing their activity points and affecting their catalytic properties.In this study,a catalytic system consisting of O-bridged iron perfluorophthalocyanine dimers(FePcF16-O-FePcF16),multi-walled carbon nanotubes(MWCNTs)and H2O_(2) was proposed.The results showed MWCNTs loaded with FePcF16-O-FePcF16 can achieve excellent degradation of CBZ with smaller dosages of FePcF16-O-FePcF16 and H2O_(2),and milder reaction temperatures.In addition,the results of experiments revealed the reaction mechanism of non-hydroxyl radicals.The highly oxidized high-valent iron-oxo(Fe(IV)=O)species was the main reactive species in the FePcF16-O-FePcF16/MWCNTs/H2O_(2) system.It is noteworthy that MWCNTs can improve the dispersion of FePcF16-O-FePcF16,contributing to the production of highly oxidized Fe(IV)=O.Then,the pathway of CBZ oxidative degradation was speculated,and the study results also provide new ideas for metal phthalocyanine-loaded carbon materials to degrade emerging pollutants. 展开更多
关键词 FePcF16-O-FePcF16 Multi-walled carbon nanotubes Synergistic catalytic High-valent iron active species
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部