Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and...Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles.展开更多
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ...This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.展开更多
To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole con...To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.展开更多
The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical system...The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.展开更多
Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this...Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this study, by using Linear-quadratic optimization technique and Kalman filter method, an optimal regulator controller with a state observer was designed for the proposed system. Simulation and experimental research was conducted on a quarter car model. The simulation analysis of the system frequency characteristic suggested that the peak value of magnitude response curve in the case of system with an optimal controller would be lowered significantly, and the experiment results also showed that an improvement in the vibration isolation effect was obtained in using the designed optimal controller over the sky hook damper controller.展开更多
This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established f...This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.展开更多
This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,th...This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.展开更多
A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs ...A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs the fuzzy controller to achieve the best isolation effect by analyzing the main frequency' s characters and inspecting the change of system parameters. The input of the fuzzy controller is the main frequency and the op-timal damping ratio is the output. Simulation results indicated that the proposed control method is very effec-tive in isolating the vibration.展开更多
This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonl...This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.展开更多
The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordin...The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordingly, a nonlinear physical model of electro-hydraulic servo active suspension system is built.Compared with the conventional nonlinear modeling, the model in this study considers the asymmetry of working areas caused by single rod hydraulic cylinder in the suspension system.In accordance with the model, a nonlinear output feedback controller based on backstepping is designed, and the effectiveness of the controller is proved based on the experimental platform.The dynamic response curve of the electro-hydraulic servo control system under the change of parameters is generated based on the simulation model.The sensitivity of electro-hydraulic servo control performance to the change of system physical parameters is investigated, and two evaluation indexes are proposed to quantify and compare the effect of all physical parameter changes on position control system.As revealed by the results, the position control characteristics of suspension actuator are more sensitive to the changes of flow gain of the servo valve, system supply oil pressure and effective working areas of cylinder, and the two evaluation indexes are over 10 times higher than other physical parameters.展开更多
A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a math...A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.展开更多
The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- ...The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- pension stage was selected and different control techniques were investigated, such as skyhook, dynamic compensation, and sliding mode control. The final aim was to investigate which control schemes are suitable for optimal exploitation of the non-linear behavior of the actuators. The performance improvement achieved by adoption of the semi-active dampers on a standard high-speed train was evaluated in terms of passenger comfort. Different control strategies have been investigated by comparing a simple SISO (single input single output) regulator based on the skyhook damper ap- proach with a centralized regulator. The centralized regulator allows for the estimation of a near optimal set of control forces that minimize car-body accelerations with respect to constraints imposed by limited performance of semi-active actuators. Simulation results show that best results is obtained using a mixed approach that considers the simultaneous applications of model based and feedback compensation control terms.展开更多
An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended und...An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.展开更多
Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle ...Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle weights are difficult to realize with modern requirements on passenger vibration comfort and wheel and rail wear.Active suspension is a powerful technology that can improve the vehicle dynamic performance and make simplified vehicle concepts possible.The KTH Railway group has,together with external partners,investigated active suspensions both numerically and experimentally for 15 years.The paper provides a summary of the activities and the most important findings.One major project carried out in close collaboration with the vehicle manufacturer Bombardier and the Swedish Transport Administration was the Green Train project,where a 2-car EMU test bench was used to demonstrate different active technologies.In ongoing projects,a concept of single axle-single suspension running gear is developed with active suspension both for comfort improvement and reduced wheel wear in curves.The results from on-track tests in the Green Train project were so good that the technology is now implemented in commercial trains and the simulation results for the single-axle running gear are very promising.展开更多
An H ∞ controller for an active suspension system is designed, which has taken the performance of ride comfort and the system robustness into account. Simulation results show that a concentrated weighting of the car...An H ∞ controller for an active suspension system is designed, which has taken the performance of ride comfort and the system robustness into account. Simulation results show that a concentrated weighting of the car body acceleration output, for the frequency where human being are most sensitive to vibration, has been executed by introducing the frequency dependent weighing function, thus the suspension acceleration frequency response characteristic can be improved. It is also pointed out that the designed controller is effective in the system robustness against the fluctuation of parameter of system.展开更多
A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force ...A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force is given. Finally a quarter car model with ER damper is constructed. The skyhook control strategy is adopted to simulate the amplitude-frequency characteristics and the vibration of suspension system under random road excitation on the basis of ER damper characteristics. The response curves of the vertical acceleration, the suspension dynamic working space and the tyre dynamic loading are obtained. Simulation results show that the acceleration is reduced effectively and then the ride comfort is improved by the skyhook control law.展开更多
A novel energy-regenerative active suspension(NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a tradit...A novel energy-regenerative active suspension(NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a traditional energyregenerative active suspension(TEAS) system. The energy recovery and active control could be implemented simultaneously in the NEAS. The transforming processes and the corresponding computational formulas of power conversion in the NEAS were provided. The simulation results show that the performances of energy recovery of the NEAS are improved, and the selfsustaining of power supply for the NEAS can be realized.展开更多
A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle s...A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle semi-active suspension system was given, which focused on the passenger’s ride comfort perform-ance. A simulation with the given initial conditions has been devised in MATLAB/SIMULINK. The simula-tion results were showing that there was an enhanced level of ride comfort for the vehicle semi-active sus-pension system with the skyhook surface sliding mode controller.展开更多
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative ...The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.展开更多
基金supported by the Imperial College Research Fellowship(ICRF 2022-2026)。
文摘Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles.
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
基金Supported by National Natural Science Foundation of China(Grant No.52272387)State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University of China(Grant No.KF2020-29)Beijing Municipal Science and Technology Commission through Beijing Nova Program of China(Grant No.20230484475).
文摘This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.
文摘To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.
基金Supported by National Natural Science Foundation of China(Grant Nos.50875112,51275002)PhD Programs Foundation of Ministry of Education of China(Grant No.20093227110013)+1 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK2010337)Natural Science Foundation of Higher Education of Jiangsu Province of China(Grant No.09KJA580001)
文摘The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.
文摘Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this study, by using Linear-quadratic optimization technique and Kalman filter method, an optimal regulator controller with a state observer was designed for the proposed system. Simulation and experimental research was conducted on a quarter car model. The simulation analysis of the system frequency characteristic suggested that the peak value of magnitude response curve in the case of system with an optimal controller would be lowered significantly, and the experiment results also showed that an improvement in the vibration isolation effect was obtained in using the designed optimal controller over the sky hook damper controller.
基金partially supported by the National Natural Science Foundation of China(61622302,61673072,61573070)Guangdong Natural Science Funds for Distinguished Young Scholar(2017A030306014)+1 种基金the Department of Education of Guangdong Province(2016KTSCX030)the Department of Education of Liaoning Province(LZ2017001)
文摘This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(51705084)the Natural Science Foundation of Guangdong Province of China(2018A030313999,2019A1515011602)+2 种基金the Fundamental Research Funds for the Central Universities(2018MS46,N2003032)the Opening Project of Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology(2019kfkt06)the Research Grants of the University of Macao(MYRG2017-00135-FST,MYRG2019-00028-FST)。
文摘This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.
文摘A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs the fuzzy controller to achieve the best isolation effect by analyzing the main frequency' s characters and inspecting the change of system parameters. The input of the fuzzy controller is the main frequency and the op-timal damping ratio is the output. Simulation results indicated that the proposed control method is very effec-tive in isolating the vibration.
文摘This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.
基金Supported by the National Natural Science Foundation of China (No. U20A20332, 52175063)Hebei Province PhD Graduate Innovation Funding Project (No. CXZZBS2021121)。
文摘The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordingly, a nonlinear physical model of electro-hydraulic servo active suspension system is built.Compared with the conventional nonlinear modeling, the model in this study considers the asymmetry of working areas caused by single rod hydraulic cylinder in the suspension system.In accordance with the model, a nonlinear output feedback controller based on backstepping is designed, and the effectiveness of the controller is proved based on the experimental platform.The dynamic response curve of the electro-hydraulic servo control system under the change of parameters is generated based on the simulation model.The sensitivity of electro-hydraulic servo control performance to the change of system physical parameters is investigated, and two evaluation indexes are proposed to quantify and compare the effect of all physical parameter changes on position control system.As revealed by the results, the position control characteristics of suspension actuator are more sensitive to the changes of flow gain of the servo valve, system supply oil pressure and effective working areas of cylinder, and the two evaluation indexes are over 10 times higher than other physical parameters.
文摘A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.
文摘The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- pension stage was selected and different control techniques were investigated, such as skyhook, dynamic compensation, and sliding mode control. The final aim was to investigate which control schemes are suitable for optimal exploitation of the non-linear behavior of the actuators. The performance improvement achieved by adoption of the semi-active dampers on a standard high-speed train was evaluated in terms of passenger comfort. Different control strategies have been investigated by comparing a simple SISO (single input single output) regulator based on the skyhook damper ap- proach with a centralized regulator. The centralized regulator allows for the estimation of a near optimal set of control forces that minimize car-body accelerations with respect to constraints imposed by limited performance of semi-active actuators. Simulation results show that best results is obtained using a mixed approach that considers the simultaneous applications of model based and feedback compensation control terms.
基金Supported by the National Nature Foundation of China (No.59975073)
文摘An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn’t depend on system’s physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.
文摘Today,it is difficult to further improve the dynamic performance of rail vehicles with conventional passive suspension.Also,simplified vehicle respectively running gear layouts that significantly could reduce vehicle weights are difficult to realize with modern requirements on passenger vibration comfort and wheel and rail wear.Active suspension is a powerful technology that can improve the vehicle dynamic performance and make simplified vehicle concepts possible.The KTH Railway group has,together with external partners,investigated active suspensions both numerically and experimentally for 15 years.The paper provides a summary of the activities and the most important findings.One major project carried out in close collaboration with the vehicle manufacturer Bombardier and the Swedish Transport Administration was the Green Train project,where a 2-car EMU test bench was used to demonstrate different active technologies.In ongoing projects,a concept of single axle-single suspension running gear is developed with active suspension both for comfort improvement and reduced wheel wear in curves.The results from on-track tests in the Green Train project were so good that the technology is now implemented in commercial trains and the simulation results for the single-axle running gear are very promising.
文摘An H ∞ controller for an active suspension system is designed, which has taken the performance of ride comfort and the system robustness into account. Simulation results show that a concentrated weighting of the car body acceleration output, for the frequency where human being are most sensitive to vibration, has been executed by introducing the frequency dependent weighing function, thus the suspension acceleration frequency response characteristic can be improved. It is also pointed out that the designed controller is effective in the system robustness against the fluctuation of parameter of system.
文摘A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force is given. Finally a quarter car model with ER damper is constructed. The skyhook control strategy is adopted to simulate the amplitude-frequency characteristics and the vibration of suspension system under random road excitation on the basis of ER damper characteristics. The response curves of the vertical acceleration, the suspension dynamic working space and the tyre dynamic loading are obtained. Simulation results show that the acceleration is reduced effectively and then the ride comfort is improved by the skyhook control law.
文摘A novel energy-regenerative active suspension(NEAS) system was designed to solve the problem of low energy recovery efficiency caused by frequent alternation of energy-recovery mode and active-control mode in a traditional energyregenerative active suspension(TEAS) system. The energy recovery and active control could be implemented simultaneously in the NEAS. The transforming processes and the corresponding computational formulas of power conversion in the NEAS were provided. The simulation results show that the performances of energy recovery of the NEAS are improved, and the selfsustaining of power supply for the NEAS can be realized.
文摘A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle semi-active suspension system was given, which focused on the passenger’s ride comfort perform-ance. A simulation with the given initial conditions has been devised in MATLAB/SIMULINK. The simula-tion results were showing that there was an enhanced level of ride comfort for the vehicle semi-active sus-pension system with the skyhook surface sliding mode controller.
文摘The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.