Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge ...Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and Fe_(x)P particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of Fe_(x)P particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn^(-1),a power density of 92.9 m W cm^(-2) at 137 m A cm^(-2) and an excellent durability were exhibited.展开更多
Li-rich layered transition metal oxides are one of the most promising cathode materials for their high energy density.However,the cathodes usually suffer from severe potential dropping and capacity fading during cycli...Li-rich layered transition metal oxides are one of the most promising cathode materials for their high energy density.However,the cathodes usually suffer from severe potential dropping and capacity fading during cycling,which are associated with the surface oxygen release and accompanied by cation densification and structural collapse.Herein,an integrative approach of simultaneous constructing uniform 3d Fe-ion doping in the transition metal layer and Li-rich Li_(5)FeO_(4) shell to grab the oxygen and prevent interfacial side reactions is proposed.The introduction of Fe induces higher redox potential and stronger 3 d Fe-O_(2)p covalent bond,triggering reversible anionic redox via a reductive coupling mechanism.And the delithiated product of Li-rich Li_(5)FeO_(4) not only acts as a protective layer alleviating the side reactions but also enhances the surface kinetic property.With the benefit of promoted reversibility of oxygen redox and enhanced surface stability,the cathode exhibits high reversible capacity and superior cycle performance.Density function theory calculation indicates that the O_(2)p non-bonding state in the cathode incorporated with Fe sits at a lower energy band,resulting in higher energy storage voltage and improved oxygen stability.Consequently,the modified cathode exhibits a discharge specific capacity of 307 m A h g^(-1)(1 C=250 m A g^(-1)),coulombic efficiency of 82.09%in the initial cycle at 0.1 C and 88.34%capacity retention after 100 cycles at 1 C.The work illustrates a strategy that could simultaneously enhance oxygen redox reversibility and interface stability by constructing lattice bond coordination and delithiation induced protective layer to develop Li-rich materials with high reversible capacity and long lifespan.展开更多
Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have rece...Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.展开更多
Hyperbolic polaritons are known to exist in materials with extreme anisotropy,exhibiting exotic optical properties that enable a plethora of unusual phenomena in the fields of polaritonics and photonics.However,achiev...Hyperbolic polaritons are known to exist in materials with extreme anisotropy,exhibiting exotic optical properties that enable a plethora of unusual phenomena in the fields of polaritonics and photonics.However,achieving simultaneous low-dimensionality,high-speed controllability,and on-demand reconfigurability of the polaritons remains unexplored despite their excellent potential in light-matter interactions,photonic integrated circuits,and optoelectronic devices.Here,we propose a metasurface approach to integrating artificially engineered electromagnetic anisotropy with fast-controllable electronic elements,offering a new route to realize active topological polaritons.Experiments showcase the proposed reconfigurable metasurface can support real-time transitions of designer polaritons from elliptical to flat,and then to hyperbolic and circular isofrequency contours.Correspondingly,the in-plane surface wavefront undergoes the transitions from convex to collimating,concave,and eventually back to convex.By exploiting the topological variations in polariton dispersions,we observe intriguing phenomena of controllable field canalization and tunable planar focusing.Furthermore,we report the concept of a planar reconfigurable integrated polariton circuit by spatially tailoring the distributions of polariton isofrequency contours,unveiling rich dispersion engineering possibilities and active control capabilities.We may provide an inspiring platform for developing planar active plasmonic devices with potential applications in subdiffraction-resolution imaging,sensing,and information processing.展开更多
We experimentally demonstrate an ultra-thin plasmonic optical rotator in the visible regime that induces a polarization rotation that is continuously tunable and switchable by an external magnetic field.The rotator is...We experimentally demonstrate an ultra-thin plasmonic optical rotator in the visible regime that induces a polarization rotation that is continuously tunable and switchable by an external magnetic field.The rotator is a magneto-plasmonic hybrid structure consisting of a magneto-optical EuSe slab and a one-dimensional plasmonic gold grating.At low temperatures,EuSe possesses a large Verdet constant and exhibits Faraday rotation,which does not saturate over a regime of several Tesla.By combining these properties with plasmonic Faraday rotation enhancement,a large tuning range of the polarization rotation of up to 8.4° for a film thickness of 220 nm is achieved.Furthermore,through experiments and simulations,we demonstrate that the unique dispersion properties of the structure enable us to tailor the wavelengths of the tunable polarization rotation to arbitrary spectral positions within the transparency window of the magneto-optical slab.The demonstrated concept might lead to important,highly integrated,non-reciprocal,photonic devices for light modulation,optical isolation,and magnetic field optical sensing.The simple fabrication of EuSe nanostructures by physical vapor deposition opens the way for many potentially interesting magneto-plasmonic systems and three-dimensional magneto-optical metamaterials.展开更多
This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor ...This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented.展开更多
基金The financial supports from Department of Chemical Engineeringthe support from China Scholarship Council(CSC)for his study at NTNU。
文摘Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and Fe_(x)P particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of Fe_(x)P particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn^(-1),a power density of 92.9 m W cm^(-2) at 137 m A cm^(-2) and an excellent durability were exhibited.
基金funded by the project from the national natural science foundation of China(21805018 and 21878195)the applied basic research project of Sichuan science and technology department(2020YJ0134)the everest scientific research program of chengdu university of technology。
文摘Li-rich layered transition metal oxides are one of the most promising cathode materials for their high energy density.However,the cathodes usually suffer from severe potential dropping and capacity fading during cycling,which are associated with the surface oxygen release and accompanied by cation densification and structural collapse.Herein,an integrative approach of simultaneous constructing uniform 3d Fe-ion doping in the transition metal layer and Li-rich Li_(5)FeO_(4) shell to grab the oxygen and prevent interfacial side reactions is proposed.The introduction of Fe induces higher redox potential and stronger 3 d Fe-O_(2)p covalent bond,triggering reversible anionic redox via a reductive coupling mechanism.And the delithiated product of Li-rich Li_(5)FeO_(4) not only acts as a protective layer alleviating the side reactions but also enhances the surface kinetic property.With the benefit of promoted reversibility of oxygen redox and enhanced surface stability,the cathode exhibits high reversible capacity and superior cycle performance.Density function theory calculation indicates that the O_(2)p non-bonding state in the cathode incorporated with Fe sits at a lower energy band,resulting in higher energy storage voltage and improved oxygen stability.Consequently,the modified cathode exhibits a discharge specific capacity of 307 m A h g^(-1)(1 C=250 m A g^(-1)),coulombic efficiency of 82.09%in the initial cycle at 0.1 C and 88.34%capacity retention after 100 cycles at 1 C.The work illustrates a strategy that could simultaneously enhance oxygen redox reversibility and interface stability by constructing lattice bond coordination and delithiation induced protective layer to develop Li-rich materials with high reversible capacity and long lifespan.
文摘Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.62271243 and 62071215)the Fundamental Research Funds for the Central Universities+2 种基金the Jiangsu Provincial Key Research and Development Program(Grant No.BE2023084)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave
文摘Hyperbolic polaritons are known to exist in materials with extreme anisotropy,exhibiting exotic optical properties that enable a plethora of unusual phenomena in the fields of polaritonics and photonics.However,achieving simultaneous low-dimensionality,high-speed controllability,and on-demand reconfigurability of the polaritons remains unexplored despite their excellent potential in light-matter interactions,photonic integrated circuits,and optoelectronic devices.Here,we propose a metasurface approach to integrating artificially engineered electromagnetic anisotropy with fast-controllable electronic elements,offering a new route to realize active topological polaritons.Experiments showcase the proposed reconfigurable metasurface can support real-time transitions of designer polaritons from elliptical to flat,and then to hyperbolic and circular isofrequency contours.Correspondingly,the in-plane surface wavefront undergoes the transitions from convex to collimating,concave,and eventually back to convex.By exploiting the topological variations in polariton dispersions,we observe intriguing phenomena of controllable field canalization and tunable planar focusing.Furthermore,we report the concept of a planar reconfigurable integrated polariton circuit by spatially tailoring the distributions of polariton isofrequency contours,unveiling rich dispersion engineering possibilities and active control capabilities.We may provide an inspiring platform for developing planar active plasmonic devices with potential applications in subdiffraction-resolution imaging,sensing,and information processing.
基金We gratefully acknowledge the funding by DFG(SPP1391,FOR730,and GI 269/11-1),BMBF(FARADAY,FKZ 13N12443)MWK,Baden-Wurttemberg Stiftung and ERC(ComplexPlas)JYC and DD also acknowledge support from Carl-Zeiss-Stiftung.
文摘We experimentally demonstrate an ultra-thin plasmonic optical rotator in the visible regime that induces a polarization rotation that is continuously tunable and switchable by an external magnetic field.The rotator is a magneto-plasmonic hybrid structure consisting of a magneto-optical EuSe slab and a one-dimensional plasmonic gold grating.At low temperatures,EuSe possesses a large Verdet constant and exhibits Faraday rotation,which does not saturate over a regime of several Tesla.By combining these properties with plasmonic Faraday rotation enhancement,a large tuning range of the polarization rotation of up to 8.4° for a film thickness of 220 nm is achieved.Furthermore,through experiments and simulations,we demonstrate that the unique dispersion properties of the structure enable us to tailor the wavelengths of the tunable polarization rotation to arbitrary spectral positions within the transparency window of the magneto-optical slab.The demonstrated concept might lead to important,highly integrated,non-reciprocal,photonic devices for light modulation,optical isolation,and magnetic field optical sensing.The simple fabrication of EuSe nanostructures by physical vapor deposition opens the way for many potentially interesting magneto-plasmonic systems and three-dimensional magneto-optical metamaterials.
文摘This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented.