The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions...The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm(PSGA) is employed for the optimizer. A rotorcraft Computational Structural Dynamics(CSD) code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics(CFD) code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.展开更多
This paper presents the use of macro-fiber composites (MFC) as actuators for twisting control of pre-twisted beams, which is one efficient method of vibration suppression techniques of helicopter rotors. An MFC is a p...This paper presents the use of macro-fiber composites (MFC) as actuators for twisting control of pre-twisted beams, which is one efficient method of vibration suppression techniques of helicopter rotors. An MFC is a piezoelectric fiber composite which has an interdigitated electrode, rectangular cross-section and unidirectional piezoceramic (PZT) fibers embedded in the polymer matrix. An MFC actuator has much higher actuation performance, flexibility and durability than a traditional piezoceramic (PZT) actuator. This study showed that an MFC could be used as an actuator to change the displacement and twist tip-angle of a pre-twisted beam. In the test, an MFC patch was pasted on the beam’s upper surface to twist the pre-twisted beam actively. Different twist tip-angle changes of the pre-twisted beam were measured under a series of actuation voltages, and a good agreement was observed when experimental results were compared with numerical results. In addition, the actuation performance of MFC was compared with those of PZT4 and PVDF and the influence of anisotropic property of the MFC on its actuation performance was also studied. The experimental and numerical results presented in this paper show the potential of MFC for use in the vibration control of helicopter rotors.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (No. 2017R1D1A1A09000590)
文摘The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm(PSGA) is employed for the optimizer. A rotorcraft Computational Structural Dynamics(CSD) code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics(CFD) code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.
基金supported by the National Natural Science Foundation of China (No. 11002106)the National Natural Science Foundation of Shannxi Province (No. 2009JQ1008)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University (No. CHD2009JC074)
文摘This paper presents the use of macro-fiber composites (MFC) as actuators for twisting control of pre-twisted beams, which is one efficient method of vibration suppression techniques of helicopter rotors. An MFC is a piezoelectric fiber composite which has an interdigitated electrode, rectangular cross-section and unidirectional piezoceramic (PZT) fibers embedded in the polymer matrix. An MFC actuator has much higher actuation performance, flexibility and durability than a traditional piezoceramic (PZT) actuator. This study showed that an MFC could be used as an actuator to change the displacement and twist tip-angle of a pre-twisted beam. In the test, an MFC patch was pasted on the beam’s upper surface to twist the pre-twisted beam actively. Different twist tip-angle changes of the pre-twisted beam were measured under a series of actuation voltages, and a good agreement was observed when experimental results were compared with numerical results. In addition, the actuation performance of MFC was compared with those of PZT4 and PVDF and the influence of anisotropic property of the MFC on its actuation performance was also studied. The experimental and numerical results presented in this paper show the potential of MFC for use in the vibration control of helicopter rotors.