In the prediction of active vibration isolation performance, control force requirements were ignored in previous work. This may limit the realization of theoretically predicted isolation performance if control force o...In the prediction of active vibration isolation performance, control force requirements were ignored in previous work. This may limit the realization of theoretically predicted isolation performance if control force of large magnitude cannot be supplied by actuators.The behavior of a feed-forward active isolation system subjected to actuator output constraints is investigated. Distributed parameter models are developed to analyze the system response, and to produce a transfer matrix for the design of an integrated passive-active isolation system. Cost functions comprising a combination of the vibration transmission energy and the sum of the squared control forces are proposed. The example system considered is a rigid body connected to a simply supported plate via two passive-active isolation mounts. Vertical and transverse forces as well as a rotational moment are applied at the rigid body, and resonances excited in elastic mounts and the supporting plate are analyzed. The overall isolation performance is evaluated by numerical simulation. The simulation results are then compared with those obtained using unconstrained control strategies. In addition, the effects of waves in elastic mounts are analyzed. It is shown that the control strategies which rely on tmconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range, but also require large control force amplitudes to control excited vibration modes of the system. Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs. In the frequency range in which rigid body modes are present, the control strategies can only achieve 5-10 dB power transmission reduction, when control forces are constrained to be the same order of the magnitude as the primary vertical force. The resonances of the elastic mounts result in a notable increase of power transmission in high frequency range and cannot be attenuated by active control. The investigation provides a guideline for design and evaluation of active vibration isolation systems.展开更多
In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations...In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.展开更多
We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed ...We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed the relationships between the active control force of the actuator and the parameters of the passive isolators by studying the dynamics of two-stage active vibration isolation for the actuator at the foregoing two positions in turn. With the actuator installed beside the upper mount, a small active force can achieve a very good isolating effect when the frequency of the stimulating force is much larger than the natural frequency of the upper mount; a larger active force is required in the low-frequency domain; and the active force equals the stimulating force when the upper mount works within the resonance region, suggesting an approach to reducing wobble and ensuring desirable installation accuracy by increasing the upper-mount stiffness. In either the low or the high frequency region far away from the resonance region, the active force is smaller when the actuator is beside the lower mount than beside the upper mount.展开更多
A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonance...A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonances introduced into the system; ② Conflict between lower isolation frequency and stiffness high enough to limit quasi-static stroke;③ Inconsistent isolation level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance, nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions: one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to tune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously.展开更多
Low-fi'equency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been de...Low-fi'equency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling.展开更多
The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This pap...The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.展开更多
The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf...The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.展开更多
A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function...A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function in such a system as with multi disturbance, multi mounts, passive isolators and actuators is deduced. By means of the numerical simulation method, the influence of actuators on power flow transmission characteristic is studied. And as a conclusion, the passive active synthetic control strategy of power flow is summarized.展开更多
Now vibration isolation of ultra precision machine tool is usually achieved through air springs systems. As far as HCM I sub micro turning machine developed by HIT, an active vibration isolation system that consists o...Now vibration isolation of ultra precision machine tool is usually achieved through air springs systems. As far as HCM I sub micro turning machine developed by HIT, an active vibration isolation system that consists of air springs and electro magnetic actuators was presented. The primary function of air springs is to support the turning machine and to isolate the high frequency vibration. The electro magnetic actuators controlled by fuzzy neural networks isolate the low frequency vibration. The experiment indicates that active vibration isolation system isolates base vibration effectively in all the frequency range. So the vibration of the machine bed is controlled under 10 -6 g and the surface roughness is improved.展开更多
Active vibration control is needed for future space telescopes, space laser communication and other precision sensitive payloads which require ultra-quiet environments. A Stewart platform based hybrid isolator with 6 ...Active vibration control is needed for future space telescopes, space laser communication and other precision sensitive payloads which require ultra-quiet environments. A Stewart platform based hybrid isolator with 6 hybrid struts is the effective system for active/passive vibration isolation over 5-250 Hz band. Using an identification transfer matrix of the Stewart platform, the coupling analysis of six channels is provided. A dynamics model is derived, and the rigid mode is removed to keep the signal of pointing control. Multi objective robust H∞ and μ synthesis strategies, based on singular values and structured singular values respectively, are presented, which simultaneously satisfy the low frequency pointing and high frequency disturbance rejection requirements and take account of the model uncertainty, parametric uncertainty and sensor noise. Then, by performing robust stability test, it is shown that the two controllers are robust to the uncertainties, the robust stability margin of H, controller is less than that of μ controller, but the order of μ controller is higher than that of H, controller, so the balanced controller reduction is provided. Additionally, the μ controller is compared with a PI controller. The time domain simulation of the μ controller indicates that the two robust control strategies are effective for keeping the pointing command and isolating the harmonic and stochastic disturbances.展开更多
A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the i...A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the isolator can be tuned off-line or on-line. This study focuses on the characterization of the isolator using a finite element based package. Firstly using the single physics solver, the stiffness behaviours of the mechanical and magnetic springs are determined, respectively. Then using the weakly coupled multi-physics method, the stiffness behaviours of the passive isolator and the semi-active isolator are investigated, respectively. With the found stiffness models, a nonlinear differential equation governing the dynamics of the isolator is solved using the time-dependent solver. The displacement transmissibility ratios of the isolator are obtained. The study confirms that the isolation region of the isolator can be widened through off-line or on-line tuning.展开更多
The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When ...The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining,the system parameters change,and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates.To solve this problem,this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control(GA-BP-PID),which can automatically adjust the control parameters according to the machining conditions.Vibration-isolation simulations and experiments based on passive vibration isolation,a PID algorithm,and the GA-BP-PID algorithm under dynamic load machining conditions were conducted.The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions.This design is reasonable and feasible.展开更多
Fluid-conveying pipes are widely used to transfer bulk fluids from one point to another in many engineering applications.They are subject to various excitations from the conveying fluids,the supporting structures,and ...Fluid-conveying pipes are widely used to transfer bulk fluids from one point to another in many engineering applications.They are subject to various excitations from the conveying fluids,the supporting structures,and the working environment,and thus are prone to vibrations such as flow-induced vibrations and acoustic-induced vibrations.Vibrations can generate variable dynamic stress and large deformation on fluid-conveying pipes,leading to vibration-induced fatigue and damage on the pipes,or even leading to failure of the entire piping system and catastrophic accidents.Therefore,the vibration control of fluid-conveying pipes is essential to ensure the integrity and safety of pipeline systems,and has attracted considerable attention from both researchers and engineers.The present paper aims to provide an extensive review of the state-of-the-art research on the vibration control of fluid-conveying pipes.The vibration analysis of fluid-conveying pipes is briefly discussed to show some key issues involved in the vibration analysis.Then,the research progress on the vibration control of fluid-conveying pipes is reviewed from four aspects in terms of passive control,active vibration control,semi-active vibration control,and structural optimization design for vibration reduction.Furthermore,the main results of existing research on the vibration control of fluid-conveying pipes are summarized,and future promising research directions are recommended to address the current research gaps.This paper contributes to the understanding of vibration control of fluid-conveying pipes,and will help the research work on the vibration control of fluidconveying pipes attract more attention.展开更多
The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of v...The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.展开更多
Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate.A low frequency characteristic extension for v...Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate.A low frequency characteristic extension for velocity vibration sensors is presented in this paper.The passive circuit technology,active compensation technology and the closed- cycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors.Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.展开更多
In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibratio...In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibration isolation device to reduce excessive vibration of the whole-spacecraft isolation system.The AVS-VI is composed of horizontal stiffness spring,positive stiffness spring,parallelogram linkage mechanism,piezoelectric actuator,acceleration sensor,viscoelastic damping,and PID active controller.Based on the AVS-VI,the generalized vibration transmissibility determined by the nonlinear output frequency response functions and the energy absorption rate is applied to analyze the isolation performance of the whole-spacecraft system with AVS-VI.The AVS-VI can conduct adaptive vibration suppression with variable stiffness to the whole-spacecraft system,and the analysis results indicate that the AVS-VI is efTective in reducing the extravagant vibration of the whole-spacecraft system,where the vibration isolation is decreased up to above 65%under different acceleration excitations.Finally,different parameters of AVS-VI are considered to optimize the whole-spacecraft system based on the generalized vibration transmissibility and the energy absorption rate.展开更多
Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, whi...Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, which may cause huge economic loss. In this study, an innovative isolator for safeguarding the vibration sensitive equipment, namely, the static dynamics interchangeable^all pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the vibration sensitive equipment during earthquakes through a series of tri-directional shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to rolling types of base isolation systems for reducing the bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the rolling surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the vibration sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.展开更多
This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stabilit...This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.展开更多
A theoretical study on the ground vibration isolation efficiency by a row of piles as passive barrier in a three-dimensional context was presented. The analysis was accomplished with the aid of integral equations gove...A theoretical study on the ground vibration isolation efficiency by a row of piles as passive barrier in a three-dimensional context was presented. The analysis was accomplished with the aid of integral equations governing Rayleigh wave scattering, used to predict the complicated Rayleigh wave field generated by a number of irregular scatters embedded in an elastic half-space. Then, the passive isolation effectiveness of a row of piles for screening Rayleigh wave was studied in detail. The effects of relevant parameters on the screening effectiveness were investigated and analyzed from the perspective of equivalence with in-filled trench. The results show that using a row of rigid piles as wave barrier is more effective than that of flexible ones, and an optimum reduction of vibration can be achieved either by increasing the size of piles or by decreasing the net spacing between the piles. Finally, based on the derived integral equation for Rayleigh wave scattering, the principle of equivalent modeling of the barrier of piles by an in-filled trench is put forward, which simplifies the analysis of vibration isolation by a row of piles.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51174126)
文摘In the prediction of active vibration isolation performance, control force requirements were ignored in previous work. This may limit the realization of theoretically predicted isolation performance if control force of large magnitude cannot be supplied by actuators.The behavior of a feed-forward active isolation system subjected to actuator output constraints is investigated. Distributed parameter models are developed to analyze the system response, and to produce a transfer matrix for the design of an integrated passive-active isolation system. Cost functions comprising a combination of the vibration transmission energy and the sum of the squared control forces are proposed. The example system considered is a rigid body connected to a simply supported plate via two passive-active isolation mounts. Vertical and transverse forces as well as a rotational moment are applied at the rigid body, and resonances excited in elastic mounts and the supporting plate are analyzed. The overall isolation performance is evaluated by numerical simulation. The simulation results are then compared with those obtained using unconstrained control strategies. In addition, the effects of waves in elastic mounts are analyzed. It is shown that the control strategies which rely on tmconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range, but also require large control force amplitudes to control excited vibration modes of the system. Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs. In the frequency range in which rigid body modes are present, the control strategies can only achieve 5-10 dB power transmission reduction, when control forces are constrained to be the same order of the magnitude as the primary vertical force. The resonances of the elastic mounts result in a notable increase of power transmission in high frequency range and cannot be attenuated by active control. The investigation provides a guideline for design and evaluation of active vibration isolation systems.
文摘In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.
基金the Natural Science Foundation of China under Grant No. 50075029
文摘We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed the relationships between the active control force of the actuator and the parameters of the passive isolators by studying the dynamics of two-stage active vibration isolation for the actuator at the foregoing two positions in turn. With the actuator installed beside the upper mount, a small active force can achieve a very good isolating effect when the frequency of the stimulating force is much larger than the natural frequency of the upper mount; a larger active force is required in the low-frequency domain; and the active force equals the stimulating force when the upper mount works within the resonance region, suggesting an approach to reducing wobble and ensuring desirable installation accuracy by increasing the upper-mount stiffness. In either the low or the high frequency region far away from the resonance region, the active force is smaller when the actuator is beside the lower mount than beside the upper mount.
基金This project is supported by Commission of Science Technology and Industry for National Defense, China.
文摘A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic isolation: ① The low frequency resonances introduced into the system; ② Conflict between lower isolation frequency and stiffness high enough to limit quasi-static stroke;③ Inconsistent isolation level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance, nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions: one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to tune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously.
基金Supported by Tsinghua University’s Scientific Research Initiative Program,China(Grant No.2010THZ05)
文摘Low-fi'equency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling.
文摘The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.
基金the National Natural Science Foundation of China (No. 11572215)the Fundamental Research Funds for the Central Universities (No. N160503002)the China Scholarship Council。
文摘The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.
文摘A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function in such a system as with multi disturbance, multi mounts, passive isolators and actuators is deduced. By means of the numerical simulation method, the influence of actuators on power flow transmission characteristic is studied. And as a conclusion, the passive active synthetic control strategy of power flow is summarized.
文摘Now vibration isolation of ultra precision machine tool is usually achieved through air springs systems. As far as HCM I sub micro turning machine developed by HIT, an active vibration isolation system that consists of air springs and electro magnetic actuators was presented. The primary function of air springs is to support the turning machine and to isolate the high frequency vibration. The electro magnetic actuators controlled by fuzzy neural networks isolate the low frequency vibration. The experiment indicates that active vibration isolation system isolates base vibration effectively in all the frequency range. So the vibration of the machine bed is controlled under 10 -6 g and the surface roughness is improved.
文摘Active vibration control is needed for future space telescopes, space laser communication and other precision sensitive payloads which require ultra-quiet environments. A Stewart platform based hybrid isolator with 6 hybrid struts is the effective system for active/passive vibration isolation over 5-250 Hz band. Using an identification transfer matrix of the Stewart platform, the coupling analysis of six channels is provided. A dynamics model is derived, and the rigid mode is removed to keep the signal of pointing control. Multi objective robust H∞ and μ synthesis strategies, based on singular values and structured singular values respectively, are presented, which simultaneously satisfy the low frequency pointing and high frequency disturbance rejection requirements and take account of the model uncertainty, parametric uncertainty and sensor noise. Then, by performing robust stability test, it is shown that the two controllers are robust to the uncertainties, the robust stability margin of H, controller is less than that of μ controller, but the order of μ controller is higher than that of H, controller, so the balanced controller reduction is provided. Additionally, the μ controller is compared with a PI controller. The time domain simulation of the μ controller indicates that the two robust control strategies are effective for keeping the pointing command and isolating the harmonic and stochastic disturbances.
文摘A novel vibration isolator is constructed by connecting a mechanical spring in parallel with a magnetic spring in order to achieve the property of high-static-low-dynamic stiffness (HSLDS). The HSLDS property of the isolator can be tuned off-line or on-line. This study focuses on the characterization of the isolator using a finite element based package. Firstly using the single physics solver, the stiffness behaviours of the mechanical and magnetic springs are determined, respectively. Then using the weakly coupled multi-physics method, the stiffness behaviours of the passive isolator and the semi-active isolator are investigated, respectively. With the found stiffness models, a nonlinear differential equation governing the dynamics of the isolator is solved using the time-dependent solver. The displacement transmissibility ratios of the isolator are obtained. The study confirms that the isolation region of the isolator can be widened through off-line or on-line tuning.
基金supported by the National Natural Science Foundation of China(Grant Nos.62073184,52105490).
文摘The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining,the system parameters change,and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates.To solve this problem,this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control(GA-BP-PID),which can automatically adjust the control parameters according to the machining conditions.Vibration-isolation simulations and experiments based on passive vibration isolation,a PID algorithm,and the GA-BP-PID algorithm under dynamic load machining conditions were conducted.The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions.This design is reasonable and feasible.
基金Project supported by the China National Funds for Distinguished Young Scholars(No.12025204)the Shanghai Municipal Education Commission(No.2019-01-07-00-09-E00018)。
文摘Fluid-conveying pipes are widely used to transfer bulk fluids from one point to another in many engineering applications.They are subject to various excitations from the conveying fluids,the supporting structures,and the working environment,and thus are prone to vibrations such as flow-induced vibrations and acoustic-induced vibrations.Vibrations can generate variable dynamic stress and large deformation on fluid-conveying pipes,leading to vibration-induced fatigue and damage on the pipes,or even leading to failure of the entire piping system and catastrophic accidents.Therefore,the vibration control of fluid-conveying pipes is essential to ensure the integrity and safety of pipeline systems,and has attracted considerable attention from both researchers and engineers.The present paper aims to provide an extensive review of the state-of-the-art research on the vibration control of fluid-conveying pipes.The vibration analysis of fluid-conveying pipes is briefly discussed to show some key issues involved in the vibration analysis.Then,the research progress on the vibration control of fluid-conveying pipes is reviewed from four aspects in terms of passive control,active vibration control,semi-active vibration control,and structural optimization design for vibration reduction.Furthermore,the main results of existing research on the vibration control of fluid-conveying pipes are summarized,and future promising research directions are recommended to address the current research gaps.This paper contributes to the understanding of vibration control of fluid-conveying pipes,and will help the research work on the vibration control of fluidconveying pipes attract more attention.
基金Project(51178342)supported by the National Natural Science Foundation of ChinaProject(KLE-TJGE-C1301)supported by the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education(Tongji University)under the International Cooperation and Exchange Program,China
文摘The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.
基金The Ministry of Science and Technology Special Foundation Grant No.217Harbin Important Science Technology Foundation Grant No.0014211044
文摘Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate.A low frequency characteristic extension for velocity vibration sensors is presented in this paper.The passive circuit technology,active compensation technology and the closed- cycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors.Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.
基金the National Natural Science Foundation of China(Project Nos.12022213,11772205 and 11902203)the Scieatifie Research Fund of Liaoning Provineinl Education Department(No.L201703)+1 种基金the Program of Liaoning Revitalization Talents(XLYC1807172)the Tralning Project of Liaoning Higher Education Institutions in Domestic and Oveseas(Nos.2018LNGXGJWPY-YB008).
文摘In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibration isolation device to reduce excessive vibration of the whole-spacecraft isolation system.The AVS-VI is composed of horizontal stiffness spring,positive stiffness spring,parallelogram linkage mechanism,piezoelectric actuator,acceleration sensor,viscoelastic damping,and PID active controller.Based on the AVS-VI,the generalized vibration transmissibility determined by the nonlinear output frequency response functions and the energy absorption rate is applied to analyze the isolation performance of the whole-spacecraft system with AVS-VI.The AVS-VI can conduct adaptive vibration suppression with variable stiffness to the whole-spacecraft system,and the analysis results indicate that the AVS-VI is efTective in reducing the extravagant vibration of the whole-spacecraft system,where the vibration isolation is decreased up to above 65%under different acceleration excitations.Finally,different parameters of AVS-VI are considered to optimize the whole-spacecraft system based on the generalized vibration transmissibility and the energy absorption rate.
基金the Science Council in Taiwan for the financial support(Project No.NSC 95- 2221-E-035-1120)
文摘Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, which may cause huge economic loss. In this study, an innovative isolator for safeguarding the vibration sensitive equipment, namely, the static dynamics interchangeable^all pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the vibration sensitive equipment during earthquakes through a series of tri-directional shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to rolling types of base isolation systems for reducing the bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the rolling surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the vibration sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.
基金National Natural Science Foundation(NNSF)of China under Grant No.51478132Guangzhou City College Scientific Research Project under Grant No.120163017
文摘This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.
基金Project(51178342)supported by the National Natural Science Foundation of ChinaProject(20130072110016)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘A theoretical study on the ground vibration isolation efficiency by a row of piles as passive barrier in a three-dimensional context was presented. The analysis was accomplished with the aid of integral equations governing Rayleigh wave scattering, used to predict the complicated Rayleigh wave field generated by a number of irregular scatters embedded in an elastic half-space. Then, the passive isolation effectiveness of a row of piles for screening Rayleigh wave was studied in detail. The effects of relevant parameters on the screening effectiveness were investigated and analyzed from the perspective of equivalence with in-filled trench. The results show that using a row of rigid piles as wave barrier is more effective than that of flexible ones, and an optimum reduction of vibration can be achieved either by increasing the size of piles or by decreasing the net spacing between the piles. Finally, based on the derived integral equation for Rayleigh wave scattering, the principle of equivalent modeling of the barrier of piles by an in-filled trench is put forward, which simplifies the analysis of vibration isolation by a row of piles.