期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Virus-inspired surface-nanoengineered antimicrobial liposome:A potential system to simultaneously achieve high activity and selectivity 被引量:3
1
作者 Yin Shi Xiaoqian Feng +12 位作者 Liming Lin Jing Wang Jiaying Chi Biyuan Wu Guilin Zhou Feiyuan Yu Qian Xu Daojun Liu Guilan Quan Chao Lu Xin Pan Jianfeng Cai Chuanbin Wu 《Bioactive Materials》 SCIE 2021年第10期3207-3217,共11页
Enveloped viruses such as SARS-CoV-2 frequently have a highly infectious nature and are considered effective natural delivery systems exhibiting high efficiency and specificity.Since simultaneously enhancing the activ... Enveloped viruses such as SARS-CoV-2 frequently have a highly infectious nature and are considered effective natural delivery systems exhibiting high efficiency and specificity.Since simultaneously enhancing the activity and selectivity of lipopeptides is a seemingly unsolvable problem for conventional chemistry and pharmaceutical approaches,we present a biomimetic strategy to construct lipopeptide-based mimics of viral architectures and infections to enhance their antimicrobial efficacy while avoiding side effects.Herein,a surface-nanoengineered antimicrobial liposome(SNAL)is developed with the morphological features of enveloped viruses,including a moderate size range,lipid-based membrane structure,and highly lipopeptide-enriched bilayer surface.The SNAL possesses virus-like infection to bacterial cells,which can mediate high-efficiency and high-selectivity bacteria binding,rapidly attack and invade bacteria via plasma membrane fusion pathway,and induce a local“burst”release of lipopeptide to produce irreversible damage of cell membrane.Remarkably,viral mimics are effective against multiple pathogens with low minimum inhibitory concentrations(1.6-6.3μg mL1),high bactericidal efficiency of>99%within 2 h,>10-fold enhanced selectivity over free lipopeptide,99.8%reduction in skin MRSA load after a single treatment,and negligible toxicity.This bioinspired design has significant potential to enhance the therapeutic efficacy of lipopeptides and may create new opportunities for designing next-generation antimicrobials. 展开更多
关键词 Virus-inspired mimics Antimicrobial lipopeptides Liposomes Virus-like infections activity and selectivity
原文传递
Efficient hydrogen peroxide production enabled by exploring layered metal telluride as two electron oxygen reduction reaction electrocatalyst
2
作者 Yingming Wang Hongyuan Yang +6 位作者 Zhiwei Liu Kui Yin Zhaowu Wang Hui Huang Yang Liu Zhenhui Kang Ziliang Chen 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期247-255,I0007,共10页
It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) wi... It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media. 展开更多
关键词 Transition metal telluride Oxygen reduction reaction Charge polarization activity and selectivity Hydrogen peroxide
下载PDF
Coupling effects of Zn single atom and high curvature supports for improved performance of CO_(2) reduction 被引量:2
3
作者 Zhongjing Hao Junxiang Chen +7 位作者 Dafeng Zhang Lirong Zheng Yueming Li Zi Yin Gang He Lei Jiao Zhenhai Wen Xiao-Jun Lv 《Science Bulletin》 SCIE EI CSCD 2021年第16期1649-1658,M0004,共11页
Single-atom catalysts(SACs)have emerged as one of the most competitive catalysts toward a variety of important electrochemical reactions,thanks to their maximum atom economy,unique electronic and geometric structures.... Single-atom catalysts(SACs)have emerged as one of the most competitive catalysts toward a variety of important electrochemical reactions,thanks to their maximum atom economy,unique electronic and geometric structures.However,the role of SACs supports on the catalytic performance does not receive enough research attentions.Here,we report an efficient route for synthesis of single atom Zn loading on the N-doped carbon nano-onions(ZnN/CNO).ZnN/CNO catalysts show an excellent high selectivity for CO_(2) electro-reduction to CO with a Faradaic efficiency of CO(FECO)up to 97%at -0.47 V(vs.reversible hydrogen electrode,RHE)and remarkable durability without activity decay.To our knowledge,ZnN/CNO is the best activity for the Zn based catalysts up to now,and superior to single atom Zn loading on the two-dimensional planar and porous structure of graphene substrate,although the graphene with larger surface area.The exact role of such carbon nano-onions(CNO)support is studied systematically by coupling characterizations and electrochemistry with density functional theory(DFT)calculations,which have attributed such good performance to the increased curvature.Such increased curvature modifies the surface charge,which then changes the adsorption energies of key intermediates,and improves the selectivity for CO generation accordingly. 展开更多
关键词 Single-atom catalysts Highly curved substrate Electrocatalytic CO_(2) reductions High activity and selectivity Coupling effect
原文传递
Insight into the bimetallic structure sensibility of catalytic nitrate reduction over Pd-Cu nanocrystals
4
作者 Zhiqiang Zhang Wenhang Li +4 位作者 Cailin Zheng Kunyu Chen Heliang Pang Wenxin Shi Jinsuo Lu 《Journal of Environmental Sciences》 2025年第3期221-233,共13页
Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater.However,the structure of bimetallic has been much less investigated for ... Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater.However,the structure of bimetallic has been much less investigated for catalyst optimization.Herein,two main types of Pd-Cu bimetallic nanocrystal structures,heterostructure and intermetallic,were prepared and characterized using high-resolution transmission electron microscopy(HRTEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals,while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals.The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow.The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported onα-Al_(2)O_(3),γ-Al_(2)O_(3),SBA-15,and XC-72R exhibited 3.82-,6.76-,4.28-,2.44-fold enhancements relative to the intermetallic nanocrystals,and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals,respectively.This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts,and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity,which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water. 展开更多
关键词 Catalytic nitrate reduction Pd-Cu bimetallic catalyst Heterostructure Intermetallic activity and selectivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部