Enveloped viruses such as SARS-CoV-2 frequently have a highly infectious nature and are considered effective natural delivery systems exhibiting high efficiency and specificity.Since simultaneously enhancing the activ...Enveloped viruses such as SARS-CoV-2 frequently have a highly infectious nature and are considered effective natural delivery systems exhibiting high efficiency and specificity.Since simultaneously enhancing the activity and selectivity of lipopeptides is a seemingly unsolvable problem for conventional chemistry and pharmaceutical approaches,we present a biomimetic strategy to construct lipopeptide-based mimics of viral architectures and infections to enhance their antimicrobial efficacy while avoiding side effects.Herein,a surface-nanoengineered antimicrobial liposome(SNAL)is developed with the morphological features of enveloped viruses,including a moderate size range,lipid-based membrane structure,and highly lipopeptide-enriched bilayer surface.The SNAL possesses virus-like infection to bacterial cells,which can mediate high-efficiency and high-selectivity bacteria binding,rapidly attack and invade bacteria via plasma membrane fusion pathway,and induce a local“burst”release of lipopeptide to produce irreversible damage of cell membrane.Remarkably,viral mimics are effective against multiple pathogens with low minimum inhibitory concentrations(1.6-6.3μg mL1),high bactericidal efficiency of>99%within 2 h,>10-fold enhanced selectivity over free lipopeptide,99.8%reduction in skin MRSA load after a single treatment,and negligible toxicity.This bioinspired design has significant potential to enhance the therapeutic efficacy of lipopeptides and may create new opportunities for designing next-generation antimicrobials.展开更多
It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) wi...It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media.展开更多
Single-atom catalysts(SACs)have emerged as one of the most competitive catalysts toward a variety of important electrochemical reactions,thanks to their maximum atom economy,unique electronic and geometric structures....Single-atom catalysts(SACs)have emerged as one of the most competitive catalysts toward a variety of important electrochemical reactions,thanks to their maximum atom economy,unique electronic and geometric structures.However,the role of SACs supports on the catalytic performance does not receive enough research attentions.Here,we report an efficient route for synthesis of single atom Zn loading on the N-doped carbon nano-onions(ZnN/CNO).ZnN/CNO catalysts show an excellent high selectivity for CO_(2) electro-reduction to CO with a Faradaic efficiency of CO(FECO)up to 97%at -0.47 V(vs.reversible hydrogen electrode,RHE)and remarkable durability without activity decay.To our knowledge,ZnN/CNO is the best activity for the Zn based catalysts up to now,and superior to single atom Zn loading on the two-dimensional planar and porous structure of graphene substrate,although the graphene with larger surface area.The exact role of such carbon nano-onions(CNO)support is studied systematically by coupling characterizations and electrochemistry with density functional theory(DFT)calculations,which have attributed such good performance to the increased curvature.Such increased curvature modifies the surface charge,which then changes the adsorption energies of key intermediates,and improves the selectivity for CO generation accordingly.展开更多
Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater.However,the structure of bimetallic has been much less investigated for ...Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater.However,the structure of bimetallic has been much less investigated for catalyst optimization.Herein,two main types of Pd-Cu bimetallic nanocrystal structures,heterostructure and intermetallic,were prepared and characterized using high-resolution transmission electron microscopy(HRTEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals,while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals.The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow.The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported onα-Al_(2)O_(3),γ-Al_(2)O_(3),SBA-15,and XC-72R exhibited 3.82-,6.76-,4.28-,2.44-fold enhancements relative to the intermetallic nanocrystals,and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals,respectively.This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts,and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity,which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.81803467,81773660)the Research and Development Plan for Key Areas in Guangdong Province(No.2019B020204002).
文摘Enveloped viruses such as SARS-CoV-2 frequently have a highly infectious nature and are considered effective natural delivery systems exhibiting high efficiency and specificity.Since simultaneously enhancing the activity and selectivity of lipopeptides is a seemingly unsolvable problem for conventional chemistry and pharmaceutical approaches,we present a biomimetic strategy to construct lipopeptide-based mimics of viral architectures and infections to enhance their antimicrobial efficacy while avoiding side effects.Herein,a surface-nanoengineered antimicrobial liposome(SNAL)is developed with the morphological features of enveloped viruses,including a moderate size range,lipid-based membrane structure,and highly lipopeptide-enriched bilayer surface.The SNAL possesses virus-like infection to bacterial cells,which can mediate high-efficiency and high-selectivity bacteria binding,rapidly attack and invade bacteria via plasma membrane fusion pathway,and induce a local“burst”release of lipopeptide to produce irreversible damage of cell membrane.Remarkably,viral mimics are effective against multiple pathogens with low minimum inhibitory concentrations(1.6-6.3μg mL1),high bactericidal efficiency of>99%within 2 h,>10-fold enhanced selectivity over free lipopeptide,99.8%reduction in skin MRSA load after a single treatment,and negligible toxicity.This bioinspired design has significant potential to enhance the therapeutic efficacy of lipopeptides and may create new opportunities for designing next-generation antimicrobials.
基金supported by the National MCF Energy R&D Program of China (2018YFE0306105)the National Key R&D Program of China (2020YFA0406104, 2020YFA0406101)+8 种基金the Innovative Research Group Project of the National Natural Science Foundation of China (51821002)the National Natural Science Foundation of China (52201269, 52302296, 51972216)the Natural Science Foundation of Jiangsu Province (BK20220028, BK20210735)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (21KJB430043)the Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Projectthe Suzhou Key Laboratory of Functional Nano & Soft Materials, the Jiangsu Key Laboratory for Advanced Negative Carbon Technologiesthe Science and Technology Development Fund, Macao SAR (0009/2022/ITP)the funding from Gusu leading talent plan for scientific and technological innovation and entrepreneurship (ZXL2022487)China Scholarship Council (CSC) for the Ph.D. fellowship。
文摘It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media.
基金This work was supported by the National Key R&D Program of China(2020YFA0710404)the Beijing Natural Science Foundation(2182077)the National Natural Science Foundation of China(21477136,51972281,and 21703250).
文摘Single-atom catalysts(SACs)have emerged as one of the most competitive catalysts toward a variety of important electrochemical reactions,thanks to their maximum atom economy,unique electronic and geometric structures.However,the role of SACs supports on the catalytic performance does not receive enough research attentions.Here,we report an efficient route for synthesis of single atom Zn loading on the N-doped carbon nano-onions(ZnN/CNO).ZnN/CNO catalysts show an excellent high selectivity for CO_(2) electro-reduction to CO with a Faradaic efficiency of CO(FECO)up to 97%at -0.47 V(vs.reversible hydrogen electrode,RHE)and remarkable durability without activity decay.To our knowledge,ZnN/CNO is the best activity for the Zn based catalysts up to now,and superior to single atom Zn loading on the two-dimensional planar and porous structure of graphene substrate,although the graphene with larger surface area.The exact role of such carbon nano-onions(CNO)support is studied systematically by coupling characterizations and electrochemistry with density functional theory(DFT)calculations,which have attributed such good performance to the increased curvature.Such increased curvature modifies the surface charge,which then changes the adsorption energies of key intermediates,and improves the selectivity for CO generation accordingly.
基金support from the National Natural Science Foundation of China(Nos.52370100,52000146,and 51978098)China Postdoctoral Science Foundation(No.2020M673351).
文摘Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater.However,the structure of bimetallic has been much less investigated for catalyst optimization.Herein,two main types of Pd-Cu bimetallic nanocrystal structures,heterostructure and intermetallic,were prepared and characterized using high-resolution transmission electron microscopy(HRTEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals,while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals.The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow.The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported onα-Al_(2)O_(3),γ-Al_(2)O_(3),SBA-15,and XC-72R exhibited 3.82-,6.76-,4.28-,2.44-fold enhancements relative to the intermetallic nanocrystals,and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals,respectively.This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts,and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity,which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water.