The increased speed of global change and associated high severity disturbances,in conjunction with the increasing suite of societal expectations on forests,suggest that the timeliness of interventions to encourage the...The increased speed of global change and associated high severity disturbances,in conjunction with the increasing suite of societal expectations on forests,suggest that the timeliness of interventions to encourage the adaptive capacity of ecosystems and to reduce negative impacts in regards to provision of ecosystem services is increasingly relevant.To address this issue,we expand the concept of lag time as used in ecological discussions into a forest management context.In this context,lag times have earlier starting and later ending points and can be separated into different components.These components include the delay till detection,decision making,and implementation,followed by ecological lag time and the time till ecosystem services are provided at acceptable levels.The first three components are influenced by the availability of information,the lack of which can extend lag times.Also,the lengths of components are not simply additive but they interact.For example,treatment preparation due to a quicker detection can lead to shorter decision and implementation lag times.We highlight the benefits of addressing the various components of lag time in forestry operations.Especially when considering adaptive capacity in times of global change,our analysis suggests that all aspects of the forestry sector are challenged to consider how to optimize lag times.Last,we propose that such issues need to be considered with any management action and are especially relevant in discussions whether the best strategy after disturbances or in the light of global change is to adopt a passive approach and let natural ecosystem processes play out on their own or whether active management is better suited to ensure a more rapid and fitting ecosystem response to facilitate the continued provision of ecosystem services.展开更多
The ascending reticular activating system(ARAS)plays a key role in the control of arousal and awareness for consciousness(Paus,2000;Zeman,2001;Van der Werf et al.,2002;Weiss et al.,2007;Siposan and Aliu,2014).It i...The ascending reticular activating system(ARAS)plays a key role in the control of arousal and awareness for consciousness(Paus,2000;Zeman,2001;Van der Werf et al.,2002;Weiss et al.,2007;Siposan and Aliu,2014).It is well known that the ARAS originates from the reticular formation(RF)of the brainstem,and connects to the cerebral cortex via intralaminar to the cerebral cortex (Paus, 2000; Zeman, 2001; Van der Werf et al., 2002; Yeo et al., 2013; Jang and Kwon, 2015). The hypothalamus is involved in the regulation of sleep and awareness which is associated with the main timekeeper of consciousness (Lin, 2000; Lin et al., 2011).展开更多
Spatio-temporal variations of vegetation phenology, e.g. start of green-up season(SOS) and end of vegetation season(EOS), serve as important indicators of ecosystems. Routinely processed products from remotely sen...Spatio-temporal variations of vegetation phenology, e.g. start of green-up season(SOS) and end of vegetation season(EOS), serve as important indicators of ecosystems. Routinely processed products from remotely sensed imagery, such as the normalized difference vegetation index(NDVI), can be used to map such variations. A remote sensing approach to tracing vegetation phenology was demonstrated here in application to the Inner Mongolia grassland, China. SOS and EOS mapping at regional and vegetation type(meadow steppe, typical steppe, desert steppe and steppe desert) levels using SPOT-VGT NDVI series allows new insights into the grassland ecosystem. The spatial and temporal variability of SOS and EOS during 1998–2012 was highlighted and presented, as were SOS and EOS responses to the monthly climatic fluctuations. Results indicated that SOS and EOS did not exhibit consistent shifts at either regional or vegetation type level; the one exception was the steppe desert, the least productive vegetation cover, which exhibited a progressive earlier SOS and later EOS. Monthly average temperature and precipitation in preseason(February, March and April) imposed most remarkable and negative effects on SOS(except for the non-significant impact of precipitation on that of the meadow steppe), while the climate impact on EOS was found to vary considerably between the vegetation types. Results showed that the spatio-temporal variability of the vegetation phenology of the meadow steppe, typical steppe and desert steppe could be reflected by the monthly thermal and hydrological factors but the progressive earlier SOS and later EOS of the highly degraded steppe desert might be accounted for by non-climate factors only, suggesting that the vegetation growing period in the highly degraded areas of the grassland could be extended possibly by human interventions.展开更多
Phosphorus is one of the most important nutrients required to support various kinds of biodegradation processes. As this particular nutrient is not included in the activated sludge model no. 1 (ASM1), this study ext...Phosphorus is one of the most important nutrients required to support various kinds of biodegradation processes. As this particular nutrient is not included in the activated sludge model no. 1 (ASM1), this study extended this model in order to determine the fate of phosphorus during the biodegradation processes. When some of the kinetics parameters are modified using observed data from the restoration project of the Xuxi River in Wuxi City, China, from August 25 to 31 in 2009, the extended model shows excellent results. In order to obtain optimum values of coefficients of nitrogen and phosphorus, the mass fraction method was used to ensure that the final results were reasonable and practically relevant. The temporal distribution of the data calculated with the extended ASM1 approximates that of the observed data.展开更多
基金funding from the Deutsche Forschungsgemeinschaft (DFG),project ID 422010107,reference number UP 14/1 through the Freiburg Research Collaboration Programme
文摘The increased speed of global change and associated high severity disturbances,in conjunction with the increasing suite of societal expectations on forests,suggest that the timeliness of interventions to encourage the adaptive capacity of ecosystems and to reduce negative impacts in regards to provision of ecosystem services is increasingly relevant.To address this issue,we expand the concept of lag time as used in ecological discussions into a forest management context.In this context,lag times have earlier starting and later ending points and can be separated into different components.These components include the delay till detection,decision making,and implementation,followed by ecological lag time and the time till ecosystem services are provided at acceptable levels.The first three components are influenced by the availability of information,the lack of which can extend lag times.Also,the lengths of components are not simply additive but they interact.For example,treatment preparation due to a quicker detection can lead to shorter decision and implementation lag times.We highlight the benefits of addressing the various components of lag time in forestry operations.Especially when considering adaptive capacity in times of global change,our analysis suggests that all aspects of the forestry sector are challenged to consider how to optimize lag times.Last,we propose that such issues need to be considered with any management action and are especially relevant in discussions whether the best strategy after disturbances or in the light of global change is to adopt a passive approach and let natural ecosystem processes play out on their own or whether active management is better suited to ensure a more rapid and fitting ecosystem response to facilitate the continued provision of ecosystem services.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(NRF-2015R1D1A1A01060314)
文摘The ascending reticular activating system(ARAS)plays a key role in the control of arousal and awareness for consciousness(Paus,2000;Zeman,2001;Van der Werf et al.,2002;Weiss et al.,2007;Siposan and Aliu,2014).It is well known that the ARAS originates from the reticular formation(RF)of the brainstem,and connects to the cerebral cortex via intralaminar to the cerebral cortex (Paus, 2000; Zeman, 2001; Van der Werf et al., 2002; Yeo et al., 2013; Jang and Kwon, 2015). The hypothalamus is involved in the regulation of sleep and awareness which is associated with the main timekeeper of consciousness (Lin, 2000; Lin et al., 2011).
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050402)the Key Laboratory for Geographic State Monitoring of the National Administration of Surveying, Mapping and Geoinformation (2014-04)the National Natural Science Foundation of China (41071249, 41371371)
文摘Spatio-temporal variations of vegetation phenology, e.g. start of green-up season(SOS) and end of vegetation season(EOS), serve as important indicators of ecosystems. Routinely processed products from remotely sensed imagery, such as the normalized difference vegetation index(NDVI), can be used to map such variations. A remote sensing approach to tracing vegetation phenology was demonstrated here in application to the Inner Mongolia grassland, China. SOS and EOS mapping at regional and vegetation type(meadow steppe, typical steppe, desert steppe and steppe desert) levels using SPOT-VGT NDVI series allows new insights into the grassland ecosystem. The spatial and temporal variability of SOS and EOS during 1998–2012 was highlighted and presented, as were SOS and EOS responses to the monthly climatic fluctuations. Results indicated that SOS and EOS did not exhibit consistent shifts at either regional or vegetation type level; the one exception was the steppe desert, the least productive vegetation cover, which exhibited a progressive earlier SOS and later EOS. Monthly average temperature and precipitation in preseason(February, March and April) imposed most remarkable and negative effects on SOS(except for the non-significant impact of precipitation on that of the meadow steppe), while the climate impact on EOS was found to vary considerably between the vegetation types. Results showed that the spatio-temporal variability of the vegetation phenology of the meadow steppe, typical steppe and desert steppe could be reflected by the monthly thermal and hydrological factors but the progressive earlier SOS and later EOS of the highly degraded steppe desert might be accounted for by non-climate factors only, suggesting that the vegetation growing period in the highly degraded areas of the grassland could be extended possibly by human interventions.
文摘Phosphorus is one of the most important nutrients required to support various kinds of biodegradation processes. As this particular nutrient is not included in the activated sludge model no. 1 (ASM1), this study extended this model in order to determine the fate of phosphorus during the biodegradation processes. When some of the kinetics parameters are modified using observed data from the restoration project of the Xuxi River in Wuxi City, China, from August 25 to 31 in 2009, the extended model shows excellent results. In order to obtain optimum values of coefficients of nitrogen and phosphorus, the mass fraction method was used to ensure that the final results were reasonable and practically relevant. The temporal distribution of the data calculated with the extended ASM1 approximates that of the observed data.