We have constructed a class of random sets by statistical contraction operators in this paper.When the probability space is some special product space and the statistical contraction operators are affine or similar,th...We have constructed a class of random sets by statistical contraction operators in this paper.When the probability space is some special product space and the statistical contraction operators are affine or similar,these statistically recursive sets are investigated by many authors.It will be very convenient for us to study their distributions and dimensions and measures using our model in this paper.展开更多
This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc...This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.展开更多
In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p...In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.展开更多
The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as ...The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.展开更多
Within the framework of quantum statistical mechanics,we have proposed an exact analytical solution to the problemof Bose-Einstein condensation(BEC)of harmonically trapped two-dimensional(2D)ideal photons.We utilize t...Within the framework of quantum statistical mechanics,we have proposed an exact analytical solution to the problemof Bose-Einstein condensation(BEC)of harmonically trapped two-dimensional(2D)ideal photons.We utilize this analyticalsolution to investigate the statistical properties of ideal photons in a 2D dye-filled spherical cap cavity.The resultsof numerical calculation of the analytical solution agree completely with the foregoing experimental results in the BEC ofharmonically trapped 2D ideal photons.The analytical expressions of the critical temperature and the condensate fractionare derived in the thermodynamic limit.It is found that the 2D critical photon number is larger than the one-dimensional(1D)critical photon number by two orders of magnitude.The spectral radiance of a 2D spherical cap cavity has a sharppeak at the frequency of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.展开更多
Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial c...Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial compression experiments with EP monitoring were carried out on fine sandstone,marble and granite samples under four displacement rates.The Tsallis entropy q value of EPs is used to analyze the selforganization evolution of rock failure.Then the influence of displacement rate and rock type on q value are explored by mineral structure and fracture modes.A self-organized critical prediction method with q value is proposed.The results show that the probability density function(PDF)of EPs follows the q-Gaussian distribution.The displacement rate is positively correlated with q value.With the displacement rate increasing,the fracture mode changes,the damage degree intensifies,and the microcrack network becomes denser.The influence of rock type on q value is related to the burst intensity of energy release and the crack fracture mode.The q value of EPs can be used as an effective prediction index for rock failure like b value of acoustic emission(AE).The results provide useful reference and method for the monitoring and early warning of geological disasters.展开更多
Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. Fir...Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. First, the partial least squares regression (PLS) model was used as the basic model. Monte Carlo cross-validation (MCCV) was used to select 25 samples out of 148 samples that did not conform to conventional statistics. Then, the interval partial least squares (iPLS) regression modeling was carried out on 123 samples, and the spectral bands were divided into 40 subintervals. The optimal subintervals are 20 and 26, and the optimal correlation coefficient of the test set (RT) is 0.58. Further, the waveband is divided into five intervals: 17, 19, 20, 22 and 26. When the number of joint intervals under each interval is three, the optimal RT is 0.71. When the number of joint subintervals is four, the optimal RT is 0.79. Finally, convolutional neural network (CNN) was used for quantitative prediction, and RT was 0.9. The results show that CNN can automatically screen the features inside the data, and the quantitative prediction effect is better than that of iPLS and synergy interval partial least squares model (SiPLS) with joint subinterval three and four, indicating that CNN can be used for quantitative analysis of water pollution degree.展开更多
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor...In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.展开更多
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and...In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.展开更多
This study focuses on designing a solution to the perennial issue of clothing fit in Fashion Industry using tools offered by digital technology and statistical analysis, in particular, the data gathered on Asian women...This study focuses on designing a solution to the perennial issue of clothing fit in Fashion Industry using tools offered by digital technology and statistical analysis, in particular, the data gathered on Asian women (Bangladeshi and Chinese). The study reveals that managing information can significantly enhance the capability of the industry to cater to the needs of its consumers and increase diversity. It centers on the effectiveness of turning dressmaking patterns into digital ones, thus transecting from traditional cutting and stitching to remote techniques. This entails the requirement to have correct self-measures and probable errors, which can arise in the process. Thus, with the help of regression analysis, the study identifies, which measurements are incorrect and influence the fit of the clothes, and, therefore, digital pattern creation is more accurate. Altogether, it can be observed how digitalization and statistical methods are crucial to transforming the way clothes are created to approach an ideal standard of measurements that fulfill every customer’s needs to make operational and efficient the clothing sector.展开更多
This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded ...This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded on the classic theoretic framework that system resilience is defined in multiple dimensions for a constructed system.Consequentially,system resilience can lose its parametric form as a random variable,falling into the realm of nonparametric statistics.With this nonparametric shift,traditional distribution-based statistics are ineffective in characterizing the migration of system resilience due to the variation of system parameters.Three statistical tools are proposed under the nonparametric statistical resilience analysis(npSRA)framework,including nonparametric copula-based sensitivity analysis,two-sample resilience test analysis,and a novel tool for resilience attenuation analysis.To demonstrate the use of this framework,we focus on electric distribution systems,commonly found in many urban,suburban,and rural areas and vulnerable to tropical storms.A novel procedure for considering resourcefulness parameters in the socioeconomic space is proposed.Numerical results reveal the complex sta-tistical relations between the distributions of system resilience,physical aging,and socioeconomic parameters for the power distribution system.The proposed resilience distance computing and resilience attenuation anal-ysis further suggests two proper nonparametric distance metrics,the Earth Moving Distance(EMD)metric and the Cramévon Mises(CVM)metric,for characterizing the migration of system resilience for electric distribution systems.展开更多
Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leadi...Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leading to incorrect inferences and conclusions,and ultimately affecting the validity and accuracy of statistical inferences.Considering this,the study designs a unified analysis scheme for different data types based on parametric statistical test methods and non-parametric test methods.The data were grouped according to sample type and divided into discrete data and continuous data.To account for differences among subgroups,the conventional chi-squared test was used for discrete data.The normal distribution is the basis of many statistical methods;if the data does not follow a normal distribution,many statistical methods will fail or produce incorrect results.Therefore,before data analysis and modeling,the data were divided into normal and non-normal groups through normality testing.For normally distributed data,parametric statistical methods were used to judge the differences between groups.For non-normal data,non-parametric tests were employed to improve the accuracy of the analysis.Statistically significant indicators were retained according to the significance index P-value of the statistical test or corresponding statistics.These indicators were then combined with relevant medical background to further explore the etiology leading to the occurrence or transformation of diabetes status.展开更多
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.展开更多
Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to...Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.展开更多
Objective To facilitate the quality evaluation suitable for the unique characteristics of Chinese materia medica(CMM)by developing and implementing a novel approach known as the matching frequency statistical moment(M...Objective To facilitate the quality evaluation suitable for the unique characteristics of Chinese materia medica(CMM)by developing and implementing a novel approach known as the matching frequency statistical moment(MFSM)method.Methods This study established the MFSM method.To demonstrate its effectiveness,we applied this novel approach to analyze Danxi Granules(丹膝颗粒,DXG)and its constituent herbal materials.To begin with,the ultra-performance liquid chromatography(UPLC)was applied to obtain the chromatographic fingerprints of DXG and its constituent herbal materi-als.Next,the MFSM was leveraged to compress and integrate them into a new fingerprint with fewer analytical units.Then,we characterized the properties and variability of both the original and integrated fingerprints by calculating total quantum statistical moment(TQSM)parameters,information entropy and information amount,along with their relative standard deviation(RSD).Finally,we compared the TQSM parameters,information entropy and infor-mation amount,and their RSD between the traditional and novel fingerprints to validate the new analytical method.Results The chromatographic peaks of DXG and its 12 raw herbal materials were divided and integrated into peak families by the MFSM method.Before integration,the ranges of the peak number,three TQSM parameters,information entropy and information amount for each peak or peak family of UPLC fingerprints of DXG and its 12 raw herbal materials were 95.07−209.73,9390−183064μv·s,5.928−21.33 min,22.62−106.69 min^(2),4.230−6.539,and 50530−974186μv·s,respectively.After integration,the ranges of these parameters were 10.00−88.00,9390−183064μv·s,5.951−22.02 min,22.27−104.73 min^(2),2.223−5.277,and 38159−807200μv·s,respectively.Correspondingly,the RSD of all the aforementioned pa-rameters before integration were 2.12%−9.15%,6.04%−49.78%,1.15%−23.10%,3.97%−25.79%,1.49%−19.86%,and 6.64%−51.20%,respectively.However,after integration,they changed to 0.00%,6.04%−49.87%,1.73%−23.02%,3.84%−26.85%,1.17%−16.54%,and 6.40%−48.59%,respectively.The results demonstrated that in the newly integrated fingerprint,the analytical units of constituent herbal materials,information entropy and information amount were significantly reduced(P<0.05),while the TQSM parameters remained unchanged(P>0.05).Additionally,the RSD of the TQSM parameters,information entropy,and information amount didn’t show significant difference before and after integration(P>0.05),but the RSD of the number and area of the integrated analytical units significantly decreased(P<0.05).Conclusion The MFSM method could reduce the analytical units of constituent herbal mate-rials while maintain the properties and variability from their original fingerprint.Thus,it could serve as a feasible and reliable tool to reduce difficulties in analyzing multi-compo-nents within CMMs and facilitating the evaluation of their quality.展开更多
In the strategic context of rural revitalization,optimizing the quality of agricultural statistical services is a crucial element for advancing agricultural modernization and sustainable rural economic development.Thi...In the strategic context of rural revitalization,optimizing the quality of agricultural statistical services is a crucial element for advancing agricultural modernization and sustainable rural economic development.This paper focuses on the significance of enhancing agricultural statistical service quality under the backdrop of rural revitalization.It addresses current issues such as inadequate implementation of agricultural statistical survey systems,an imperfect data quality control system,and a shortage of statistical service personnel.Proposals are made to improve the statistical survey system,enhance the data quality control framework,and strengthen personnel training.These pathways offer references for elevating the quality of agricultural statistical services and implementing the rural revitalization strategy in the new era.展开更多
Statistical literacy is crucial for cultivating well-rounded thinkers.The integration of evidence-based strategies in teaching and learning is pivotal for enhancing students’statistical literacy.This research specifi...Statistical literacy is crucial for cultivating well-rounded thinkers.The integration of evidence-based strategies in teaching and learning is pivotal for enhancing students’statistical literacy.This research specifically focuses on the utilization of Share and Model Concepts and Nurturing Metacognition as evidence-based strategies aimed at improving the statistical literacy of learners.The study employed a quasi-experimental design,specifically the nonequivalent control group,wherein students answered pre-test and post-test instruments and researcher-made questionnaires.The study included 50 first-year Bachelor in Secondary Education majors in Mathematics and Science for the academic year 2023-2024.The results of the study revealed a significant difference in the scores of student respondents,indicating that the use of evidence-based strategies helped students enhance their statistical literacy.This signifies a noteworthy increase in their performance,ranging from very low to very high proficiency in understanding statistical concepts,insights into the application of statistical concepts,numeracy,graph skills,interpretation capabilities,and visualization and communication skills.Furthermore,the study showed a significant difference in the post-test scores’performance of the two groups in understanding statistical concepts and visualization and communication skills.However,no significant difference was found in the post-test scores of the two groups concerning insights into the application of statistical concepts,numeracy and graph skills,and interpretation capabilities.Additionally,students acknowledged that the implementation of evidence-based strategies significantly contributed to the improvement of their statistical literacy.展开更多
Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
Healthcare decisions are based on scientific evidence obtained from medical studies by gathering data and analyzing it to obtain the best results. When analyzing data, biostatistics is a powerful tool, but healthcare ...Healthcare decisions are based on scientific evidence obtained from medical studies by gathering data and analyzing it to obtain the best results. When analyzing data, biostatistics is a powerful tool, but healthcare professionals lack knowledge in this field. This lack of knowledge can manifest itself in situations such as choosing the wrong statistical test for the right situation or applying a statistical test without checking its assumptions, leading to inaccurate results and misleading conclusions. With the help of this “narrative review”, the aim is to bring biostatistics closer to healthcare professionals by answering certain questions: how to describe the distribution of data? how to assess the normality of data? how to transform data? and how to choose between nonparametric and parametric tests? Through this work, our hope is that the reader will be able to choose the right test for the right situation, in order to obtain the most accurate results.展开更多
The high-resolution nonlinear simultaneous inversion of petrophysical parameters is based on Bayesian statistics and combines petrophysics with geostatistical a priori information. We used the fast Fourier transform–...The high-resolution nonlinear simultaneous inversion of petrophysical parameters is based on Bayesian statistics and combines petrophysics with geostatistical a priori information. We used the fast Fourier transform–moving average(FFT–MA) and gradual deformation method(GDM) to obtain a reasonable variogram by using structural analysis and geostatistical a priori information of petrophysical parameters. Subsequently, we constructed the likelihood function according to the statistical petrophysical model. Finally, we used the Metropolis algorithm to sample the posteriori probability density and complete the inversion of the petrophysical parameters. We used the proposed method to process data from an oil fi eld in China and found good match between inversion and real data with high-resolution. In addition, the direct inversion of petrophysical parameters avoids the error accumulation and decreases the uncertainty, and increases the computational effi ciency.展开更多
文摘We have constructed a class of random sets by statistical contraction operators in this paper.When the probability space is some special product space and the statistical contraction operators are affine or similar,these statistically recursive sets are investigated by many authors.It will be very convenient for us to study their distributions and dimensions and measures using our model in this paper.
基金supported by Northern Border University,Arar,KSA,through the Project Number“NBU-FFR-2024-2248-02”.
文摘This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.
文摘In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.
文摘The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.
基金supported by the National Natural Science Foundation of China(Grant Nos.10174024 and 10474025).
文摘Within the framework of quantum statistical mechanics,we have proposed an exact analytical solution to the problemof Bose-Einstein condensation(BEC)of harmonically trapped two-dimensional(2D)ideal photons.We utilize this analyticalsolution to investigate the statistical properties of ideal photons in a 2D dye-filled spherical cap cavity.The resultsof numerical calculation of the analytical solution agree completely with the foregoing experimental results in the BEC ofharmonically trapped 2D ideal photons.The analytical expressions of the critical temperature and the condensate fractionare derived in the thermodynamic limit.It is found that the 2D critical photon number is larger than the one-dimensional(1D)critical photon number by two orders of magnitude.The spectral radiance of a 2D spherical cap cavity has a sharppeak at the frequency of the cavity cutoff when the photon number exceeds the critical value determined by a temperature.
基金supported by National Key R&D Program of China(2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2913)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ139).
文摘Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial compression experiments with EP monitoring were carried out on fine sandstone,marble and granite samples under four displacement rates.The Tsallis entropy q value of EPs is used to analyze the selforganization evolution of rock failure.Then the influence of displacement rate and rock type on q value are explored by mineral structure and fracture modes.A self-organized critical prediction method with q value is proposed.The results show that the probability density function(PDF)of EPs follows the q-Gaussian distribution.The displacement rate is positively correlated with q value.With the displacement rate increasing,the fracture mode changes,the damage degree intensifies,and the microcrack network becomes denser.The influence of rock type on q value is related to the burst intensity of energy release and the crack fracture mode.The q value of EPs can be used as an effective prediction index for rock failure like b value of acoustic emission(AE).The results provide useful reference and method for the monitoring and early warning of geological disasters.
文摘Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. First, the partial least squares regression (PLS) model was used as the basic model. Monte Carlo cross-validation (MCCV) was used to select 25 samples out of 148 samples that did not conform to conventional statistics. Then, the interval partial least squares (iPLS) regression modeling was carried out on 123 samples, and the spectral bands were divided into 40 subintervals. The optimal subintervals are 20 and 26, and the optimal correlation coefficient of the test set (RT) is 0.58. Further, the waveband is divided into five intervals: 17, 19, 20, 22 and 26. When the number of joint intervals under each interval is three, the optimal RT is 0.71. When the number of joint subintervals is four, the optimal RT is 0.79. Finally, convolutional neural network (CNN) was used for quantitative prediction, and RT was 0.9. The results show that CNN can automatically screen the features inside the data, and the quantitative prediction effect is better than that of iPLS and synergy interval partial least squares model (SiPLS) with joint subinterval three and four, indicating that CNN can be used for quantitative analysis of water pollution degree.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R194)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.
文摘In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.
文摘This study focuses on designing a solution to the perennial issue of clothing fit in Fashion Industry using tools offered by digital technology and statistical analysis, in particular, the data gathered on Asian women (Bangladeshi and Chinese). The study reveals that managing information can significantly enhance the capability of the industry to cater to the needs of its consumers and increase diversity. It centers on the effectiveness of turning dressmaking patterns into digital ones, thus transecting from traditional cutting and stitching to remote techniques. This entails the requirement to have correct self-measures and probable errors, which can arise in the process. Thus, with the help of regression analysis, the study identifies, which measurements are incorrect and influence the fit of the clothes, and, therefore, digital pattern creation is more accurate. Altogether, it can be observed how digitalization and statistical methods are crucial to transforming the way clothes are created to approach an ideal standard of measurements that fulfill every customer’s needs to make operational and efficient the clothing sector.
基金supported by the National Science Foundation(NSF)under Award Number IIA-1355406.
文摘This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded on the classic theoretic framework that system resilience is defined in multiple dimensions for a constructed system.Consequentially,system resilience can lose its parametric form as a random variable,falling into the realm of nonparametric statistics.With this nonparametric shift,traditional distribution-based statistics are ineffective in characterizing the migration of system resilience due to the variation of system parameters.Three statistical tools are proposed under the nonparametric statistical resilience analysis(npSRA)framework,including nonparametric copula-based sensitivity analysis,two-sample resilience test analysis,and a novel tool for resilience attenuation analysis.To demonstrate the use of this framework,we focus on electric distribution systems,commonly found in many urban,suburban,and rural areas and vulnerable to tropical storms.A novel procedure for considering resourcefulness parameters in the socioeconomic space is proposed.Numerical results reveal the complex sta-tistical relations between the distributions of system resilience,physical aging,and socioeconomic parameters for the power distribution system.The proposed resilience distance computing and resilience attenuation anal-ysis further suggests two proper nonparametric distance metrics,the Earth Moving Distance(EMD)metric and the Cramévon Mises(CVM)metric,for characterizing the migration of system resilience for electric distribution systems.
基金National Natural Science Foundation of China(No.12271261)Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.SJCX230368)。
文摘Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leading to incorrect inferences and conclusions,and ultimately affecting the validity and accuracy of statistical inferences.Considering this,the study designs a unified analysis scheme for different data types based on parametric statistical test methods and non-parametric test methods.The data were grouped according to sample type and divided into discrete data and continuous data.To account for differences among subgroups,the conventional chi-squared test was used for discrete data.The normal distribution is the basis of many statistical methods;if the data does not follow a normal distribution,many statistical methods will fail or produce incorrect results.Therefore,before data analysis and modeling,the data were divided into normal and non-normal groups through normality testing.For normally distributed data,parametric statistical methods were used to judge the differences between groups.For non-normal data,non-parametric tests were employed to improve the accuracy of the analysis.Statistically significant indicators were retained according to the significance index P-value of the statistical test or corresponding statistics.These indicators were then combined with relevant medical background to further explore the etiology leading to the occurrence or transformation of diabetes status.
文摘The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.
文摘Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach.
基金Natural Science Foundation of Hunan province(2022JJ30453 and 2024JJ6362)the Key Research and Development Program of Hunan Province(2022SK2014).
文摘Objective To facilitate the quality evaluation suitable for the unique characteristics of Chinese materia medica(CMM)by developing and implementing a novel approach known as the matching frequency statistical moment(MFSM)method.Methods This study established the MFSM method.To demonstrate its effectiveness,we applied this novel approach to analyze Danxi Granules(丹膝颗粒,DXG)and its constituent herbal materials.To begin with,the ultra-performance liquid chromatography(UPLC)was applied to obtain the chromatographic fingerprints of DXG and its constituent herbal materi-als.Next,the MFSM was leveraged to compress and integrate them into a new fingerprint with fewer analytical units.Then,we characterized the properties and variability of both the original and integrated fingerprints by calculating total quantum statistical moment(TQSM)parameters,information entropy and information amount,along with their relative standard deviation(RSD).Finally,we compared the TQSM parameters,information entropy and infor-mation amount,and their RSD between the traditional and novel fingerprints to validate the new analytical method.Results The chromatographic peaks of DXG and its 12 raw herbal materials were divided and integrated into peak families by the MFSM method.Before integration,the ranges of the peak number,three TQSM parameters,information entropy and information amount for each peak or peak family of UPLC fingerprints of DXG and its 12 raw herbal materials were 95.07−209.73,9390−183064μv·s,5.928−21.33 min,22.62−106.69 min^(2),4.230−6.539,and 50530−974186μv·s,respectively.After integration,the ranges of these parameters were 10.00−88.00,9390−183064μv·s,5.951−22.02 min,22.27−104.73 min^(2),2.223−5.277,and 38159−807200μv·s,respectively.Correspondingly,the RSD of all the aforementioned pa-rameters before integration were 2.12%−9.15%,6.04%−49.78%,1.15%−23.10%,3.97%−25.79%,1.49%−19.86%,and 6.64%−51.20%,respectively.However,after integration,they changed to 0.00%,6.04%−49.87%,1.73%−23.02%,3.84%−26.85%,1.17%−16.54%,and 6.40%−48.59%,respectively.The results demonstrated that in the newly integrated fingerprint,the analytical units of constituent herbal materials,information entropy and information amount were significantly reduced(P<0.05),while the TQSM parameters remained unchanged(P>0.05).Additionally,the RSD of the TQSM parameters,information entropy,and information amount didn’t show significant difference before and after integration(P>0.05),but the RSD of the number and area of the integrated analytical units significantly decreased(P<0.05).Conclusion The MFSM method could reduce the analytical units of constituent herbal mate-rials while maintain the properties and variability from their original fingerprint.Thus,it could serve as a feasible and reliable tool to reduce difficulties in analyzing multi-compo-nents within CMMs and facilitating the evaluation of their quality.
文摘In the strategic context of rural revitalization,optimizing the quality of agricultural statistical services is a crucial element for advancing agricultural modernization and sustainable rural economic development.This paper focuses on the significance of enhancing agricultural statistical service quality under the backdrop of rural revitalization.It addresses current issues such as inadequate implementation of agricultural statistical survey systems,an imperfect data quality control system,and a shortage of statistical service personnel.Proposals are made to improve the statistical survey system,enhance the data quality control framework,and strengthen personnel training.These pathways offer references for elevating the quality of agricultural statistical services and implementing the rural revitalization strategy in the new era.
文摘Statistical literacy is crucial for cultivating well-rounded thinkers.The integration of evidence-based strategies in teaching and learning is pivotal for enhancing students’statistical literacy.This research specifically focuses on the utilization of Share and Model Concepts and Nurturing Metacognition as evidence-based strategies aimed at improving the statistical literacy of learners.The study employed a quasi-experimental design,specifically the nonequivalent control group,wherein students answered pre-test and post-test instruments and researcher-made questionnaires.The study included 50 first-year Bachelor in Secondary Education majors in Mathematics and Science for the academic year 2023-2024.The results of the study revealed a significant difference in the scores of student respondents,indicating that the use of evidence-based strategies helped students enhance their statistical literacy.This signifies a noteworthy increase in their performance,ranging from very low to very high proficiency in understanding statistical concepts,insights into the application of statistical concepts,numeracy,graph skills,interpretation capabilities,and visualization and communication skills.Furthermore,the study showed a significant difference in the post-test scores’performance of the two groups in understanding statistical concepts and visualization and communication skills.However,no significant difference was found in the post-test scores of the two groups concerning insights into the application of statistical concepts,numeracy and graph skills,and interpretation capabilities.Additionally,students acknowledged that the implementation of evidence-based strategies significantly contributed to the improvement of their statistical literacy.
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
文摘Healthcare decisions are based on scientific evidence obtained from medical studies by gathering data and analyzing it to obtain the best results. When analyzing data, biostatistics is a powerful tool, but healthcare professionals lack knowledge in this field. This lack of knowledge can manifest itself in situations such as choosing the wrong statistical test for the right situation or applying a statistical test without checking its assumptions, leading to inaccurate results and misleading conclusions. With the help of this “narrative review”, the aim is to bring biostatistics closer to healthcare professionals by answering certain questions: how to describe the distribution of data? how to assess the normality of data? how to transform data? and how to choose between nonparametric and parametric tests? Through this work, our hope is that the reader will be able to choose the right test for the right situation, in order to obtain the most accurate results.
基金sponsored by the National Basic Research Program of China(No.2013CB228604)the Major National Science and Technology Projects(No.2011ZX05009)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2011DQ013)the National Science Foundation of China(No.41204085)
文摘The high-resolution nonlinear simultaneous inversion of petrophysical parameters is based on Bayesian statistics and combines petrophysics with geostatistical a priori information. We used the fast Fourier transform–moving average(FFT–MA) and gradual deformation method(GDM) to obtain a reasonable variogram by using structural analysis and geostatistical a priori information of petrophysical parameters. Subsequently, we constructed the likelihood function according to the statistical petrophysical model. Finally, we used the Metropolis algorithm to sample the posteriori probability density and complete the inversion of the petrophysical parameters. We used the proposed method to process data from an oil fi eld in China and found good match between inversion and real data with high-resolution. In addition, the direct inversion of petrophysical parameters avoids the error accumulation and decreases the uncertainty, and increases the computational effi ciency.