期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于EEG握力变化及想象单次识别研究 被引量:3
1
作者 陈睿 伏云发 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期159-166,共8页
目前基于运动想象(Motor Imagery,MI)的脑-机接口(Brain-Computer Interface,BCI)可提供的指令数相对较少,为增加新的控制参数,基于脑电(Electroencephalogram,EEG)研究握力变化及想象的单次识别.招募20名被试者参与实验,要求被试者用... 目前基于运动想象(Motor Imagery,MI)的脑-机接口(Brain-Computer Interface,BCI)可提供的指令数相对较少,为增加新的控制参数,基于脑电(Electroencephalogram,EEG)研究握力变化及想象的单次识别.招募20名被试者参与实验,要求被试者用右手执行三种不同握力大小(4 kg,10 kg,16 kg)的实际或想象任务,对任务期间覆盖运动区的九个通道的EEG数据进行分析,采用共同空间模式(Common Spatial Pattern,CSP)提取特征,然后利用极限学习机(Extreme Learning Machine,ELM)和支持向量机(Support Vector Machine,SVM)进行单次识别. ELM对三类握力变化及想象的平均单次识别准确率分别为82. 3%±2. 1%和80%±1%,SVM对三类握力变化及其想象的平均单次识别准确率分别为86. 3%±5. 5%和83. 7%±3. 8%.实验结果表明,ELM和SVM能有效地识别三种不同握力大小的实际或想象任务,而SVM的分类结果更好,可望为MI-BCI增加新的控制参数提供新思路. 展开更多
关键词 脑-机接口 脑电 握力变化想象 极限学习机 单次识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部